Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are regarded as useful tools for cancer detection, particularly for the early stage; however, little is known about their diagnostic impact on gastric cancer (GC). We hypothesized that GC-related lncRNAs might release into the circulation during tumor initiation and could be utilized to detect and monitor GC. 8 lncRNAs which previously found to be differently expressed in GC were selected as candidate targets for subsequent circulating lncRNA assay. After validating in 20 pairs of tissues and plasma in training set, H19 was selected for further analysis in another 70 patients and 70 controls. Plasma level of H19 was significantly higher in GC patients compared with normal controls (p < 0.0001). By receiver operating characteristic curve (ROC) analysis, the area under the ROC curve (AUC) was 0.838; p < 0.001; sensitivity, 82.9%; specificity, 72.9%). Furthermore, H19 expression enabled the differentiation of early stage GC from controls with AUC of 0.877; sensitivity, 85.5%; specificity, 80.1%. Besides, plasma levels of H19 were significantly lower in postoperative samples than preoperative samples (p = 0.001). In conclusion, plasma H19 could serve as a potential biomarker for diagnosis of GC, in particular for early tumor screening.
Background/Aims: Non-coding RNAs including miRNA and lncRNA had been reported to regulate gene expression and were both related to cancer progression. MicroRNA-141 (miR-141) has been reported to play a role in the epithelial to mesenchymal transition (EMT) process and H19 has also been demonstrated to promote malignancy in various cancers. We aimed to determine the correlation between miR-141 and H19 and their roles in gastric cancer in this study. Methods: H19 and miR-141 expression were detected by qRT-PCR. By bioinformatic analysis and luciferase assay we examined the correlation between H19 and miR-141 in vitro. Results: H19 expression was found to be inversely correlated to miR-141 expression in gastric cancer cells and tissues. H19 promotes malignancy including proliferation and invasion whereas miR-141 suppresses malignancy in human cancer cells. MiR-141 binds to H19 in a sequence specific manner, and suppresses H19 expression and functions including proliferation and invasion. MiR-141 could also regulate H19 target genes and miR-141 inhibitor restores H19 siRNA function, while H19 regulates miR-141 target gene ZEB1. Conclusion: These results were the first to demonstrate that H19 and miR-141 could compete with each other and affect their target genes in gastric cancer, which provide important clues for understanding the key roles of lncRNA-miRNA functional network in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.