Hollow micro-/nano-structured materials are now playing an important role in cutting edge innovations for energy conversion and storage technologies such as solar cells, fuel cells, lithium ion batteries and super capacitors. These materials show great promise in addressing growing environmental concerns for cleaner power sources at a time of increasing global demand for energy. In this perspective, we show that complex multi-shelled micro-/nano-materials show significant material advantages in many applications over conventional simple hollow structures. We also summarize the vast array of synthetic strategies used to create multi-shelled hollow structures, and discuss the possible application of these novel materials for power generation and storage. Finally, the emergent challenges and future developments of multi-shelled hollow structures are further discussed.
Hierarchically ordered macro-mesoporous titania films have been produced through a confinement self-assembly method within the regular voids of a colloidal crystal with three-dimensional periodicity. Furthermore, graphene as an excellent electron-accepting and electron-transporting material has been incorporated into the hierarchically ordered macro-mesoporous titania frameworks by in situ reduction of graphene oxide added in the self-assembly system. Incorporation of interconnected macropores in mesoporous films improves the mass transport through the film, reduces the length of the mesopore channel, and increases the accessible surface area of the thin film, whereas the introduction of graphene effectively suppresses the charge recombination. Therefore, the significant enhancement of photocatalytic activity for degrading the methyl blue has been achieved. The apparent rate constants for macro-mesoporous titania films without and with graphene are up to 0.045 and 0.071 min(-1), respectively, almost 11 and 17 times higher than that for pure mesoporous titania films (0.0041 min(-1)).
A series of multishelled ZnO hollow microspheres with controlled shell number and inter-shell spacing have been successfully prepared by a simple carbonaceous microsphere templating method, whose large surface area and complex multishelled hollow structure enable them load sufficient dyes and multi-reflect the light for enhancing light harvesting and realize a high conversion efficiency of up to 5.6% when used in dye-sensitized solar cells.
Great progress has been made in the preparation and application of multi-shelled hollow micro-/nanostructures during the past decade. However, the synthetic methodologies and potential applications of these novel and interesting materials have not been reviewed comprehensively in the literature. In the current review we first describe different synthetic methodologies for multi-shelled hollow micro-/nanostructures as well as their compositional and geometric manipulation and then review their applications in energy conversion and storage, sensors, photocatalysis, and drug delivery. The correlation between the geometric properties of multi-shelled hollow micro-/nanostructures and their specific performance in relevant applications are highlighted. These results demonstrate that the geometry has a direct impact on the properties and potential applications of such materials. Finally, the emerging challenges and future development of multi-shelled hollow micro-/nanostructures are further discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.