Graft copolymers with a large number of side chains chemically attached onto a linear backbone are endowed with unusual properties thanks to their confined and compact structures, including wormlike conformation, compact molecular dimensions and notable chain end effects. Growing attention has been paid to these interesting macromolecules due to their importance in understanding the correlation between architectures and properties, as well as their potential applications. To date, the synthesis and properties of graft copolymers in both solution and bulk have been extensively investigated, along with their applications. In this tutorial review, recent advances in synthetic approaches towards the construction of well-defined graft copolymers are discussed in detail and applications of these interesting macromolecules are highlighted by selected examples.
We report the preparation of a series of fiber-like micelles of narrow length distribution with an oligo(p-phenylenevinylene) (OPV)-core and a poly(N-isopropylacrylamide) (PNIPAM) corona via two different crystallization-driven self-assembly (CDSA) strategies. The average length L of these micelles can be varied up to 870 nm by varying the temperature in self-seeding experiments. In addition, seeded growth was employed not only to prepare uniform micelles of controlled length, but also to form fiber-like A-B-A triblock comicelles with an OPV-core.
Polymer brushes are special macromolecular structures with polymer chains densely tethered to another polymer chain (one-dimensional, 1D) or the surface of a planar (two-dimensional, 2D), spherical or cylindrical (three-dimensional, 3D) solid via a stable covalent or noncovalent bond linkage. In comparison with the corresponding linear counterpart with similar molecular composition, one-dimension polymer brushes have some fascinating properties including wormlike conformation, compact molecular dimension, and notable chain end effects due to their compact and confined densely grafted structure. The introduction of polymer chains onto the surface of planar and spherical or cylindrical matrix will not only significantly change the surface-related properties of the matrix but also endows the obtained hybrid polymer brushes with new functionalities. Thus, polymer brushes are of great interest in the fields of polymer and material science due to their broad applications, such as catalysis, nanolithography, biomineralization, drug delivery, medical diagnosis, optoelectronics, and so on. Although a variety of 1D, 2D, and 3D polymer brushes have been prepared with the advent of living/controlled polymerization, the development of more efficient and facile synthetic protocols that permit access to polymer brushes with precisely controlled composition, structure, and functionality still represents a key contemporary challenge. In this Account, we summarize our recent efforts on the development of efficient methods to prepare 1D, 2D, and 3D polymer brushes and exploration of their potential applications in drug delivery, antifouling coating, catalysis, and lithium-ion batteries and also highlight related achievements by other groups. First, we briefly introduce the precedent examples of efficient synthesis of polymer brushes with different structures and functionalities by the combination of monomer design with living/controlled polymerization. Given the excellent tolerance and use of the same catalytic system without any mutual interference of ATRP and Cu-catalyzed alkyne-azide cyclization (CuAAC) click reaction, a versatile and efficient platform for precise synthesis of complex asymmetric (Janus-type) 1D polymer brushes was developed on the basis of the "trifunctional monomer" strategy without polymeric functionality transformation. Subsequently, a noncovalent strategy based on crystallization-driven self assembly to prepare well-defined polymer brushes with precise control over their composition and dimensions is described. Notably, the crystallization-driven self assembly can be treated as a living/controlled polymerization of "polymeric monomer" with a special building segment for crystallization, which allows for preparing linear polymer brushes with length as high as tens of micrometers. Moreover, the properties and related applications of polymer brushes as interesting building blocks for constructing hierarchical nanostructures, efficient drug deliver carriers, antifouling films, and lithium-ion batteries are addr...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.