The circadian clock refers to the intrinsic biological rhythms of physiological functions and behaviours. It synergises with the solar cycle and has profound effects on normal metabolism and organismal fitness. Recent studies have suggested that the circadian clock exerts great influence on the differentiation of stem cells. Here, we focus on the close relationship between the circadian clock and mesenchymal stem cell fate decisions in the skeletal system. The underlying mechanisms include hormone signals and the activation and repression of different transcription factors under circadian regulation. Additionally, the clock interacts with epigenetic modifiers and non-coding RNAs and is even involved in chromatin remodelling. Although the specificity and safety of circadian therapy need to be further studied, the circadian regulation of stem cells can be regarded as a promising candidate for health improvement and disease prevention.
Background No studies have focused on cortical anchorage resistance in cuspids, this study aimed to characterize the cortical anchorage according to sagittal skeletal classes using cone-beam computed tomography (CBCT). Methods CBCT images of 104 men and 104 women were divided into skeletal class I, II, and III malocclusion groups. Skeletal and dental evaluations were performed on the sagittal and axial cross-sections. One-way analysis of variance followed by least significant difference post-hoc tests was used for group differences. Multiple linear regression was performed to evaluate the relationship between influential factors and cuspid cortical anchorage. Results All cuspids were close to the labial bone cortex in different sagittal skeletal patterns and had different inclinations. There was a significant difference in the apical root position of cuspids in the alveolar bone; however, no significant difference in the middle or cervical portions of the root was found between different sagittal facial patterns. The middle of the cuspid root was embedded to the greatest extent in the labial bone cortex, with no significant difference between the sagittal patterns. For all sagittal patterns, 6.03 ± 4.41° (men) and 6.08 ± 4.45° (women) may be appropriate root control angles to keep maxillary cuspids’ roots detached from the labial bone cortex. Conclusions Comparison of skeletal class I, II, and III malocclusion patients showed that dental compensation alleviated sagittal skeletal discrepancies in the cuspid positions of all patients, regardless of the malocclusion class. Detailed treatment procedures and clear treatment boundaries of cuspids with different skeletal patterns can improve the treatment time, periodontal bone remodeling, and post-treatment long-term stability. Future studies on cuspids with different dentofacial patterns and considering cuspid morphology and periodontal condition may provide more evidence for clinical treatment.
This study aims to evaluate the overall bone thickness (OBT) and cortical bone thickness (CBT) of mandibular symphysis and to determine the optimal sites for the insertion of orthodontic mini implants. Cone-beam computed tomography (CBCT) images of 32 patients were included in this study. The sample was further categorized into three facial types: low-, average-, and high-angle. OBT and CBT were measured at the mandibular symphysis region. All measurements were performed at six different heights from the cementoenamel junction [CEJ] and at seven different angles to the occlusal plane. Analysis of variance (ANOVA) was used for statistical comparison and a p value less than 0.05 was considered statistically significant. Our results revealed that neither OBT nor CBT was influenced by age or sex, except for the observation that CBT was significantly greater in adults than in adolescents. OBT and CBT were significantly greater in low-angle cases than in average- and high-angle cases. Both OBT and CBT were significantly influenced by insertion locations, heights and angles, and their interactions. CBT and OBT were greatest at the location between two lower central incisors, and became greater with increases in insertion height and angle. Both recommended and optimal insertion sites were mapped. The mandibular symphysis region was suitable for the placement of orthodontic mini implants. The optimal insertion site was 6–10 mm apical to the CEJ between two lower central incisors, with an insertion angle being 0–60 degrees to the occlusal plane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.