This study aimed to investigate the effect of fluid shear stress (FSS) on cell proliferation and expression of focal adhesion kinase (FAK) in MG-63 cells on different modified titanium surfaces. MG63 cells were cultured on three different surfaces: glass slide, polished treatment (PT) titanium surface and sandblasted/acid-etched surfaces (SLA) titanium surface. The surface topography and roughness were evaluated by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. The cells were subjected to FSS, and the cell appearance before and after the stress was evaluated. MTT assay was applied to estimate cell proliferation. The mRNA and protein levels of FAK were determined by qRT-PCR and western blotting. Titanium plates demonstrated different surface microtopography. Parameter Ra values of SLA group were around 3.4 µm, which was higher than PT group. Exposure to the FSS of 12 dynes/cm 2 significantly induced positive upregulation of cellular proliferation and the expression of FAK, which were directly correlated with the duration of exposure and surface. Cells in SLA group were able to endurance the longtime of FSS, especially under the FSS of 16 dynes/cm 2 . SLA surface had a positive influence on the expression of FAK. Different surface modifications created different microtopography of titanium plates. Cell proliferation and the mRNA and protein expression of FAK were stimulated by FSS and regulated by a marked synergistic effect of surface topography and the level and duration of FSS.
In order to investigate the effect of fluid shear stress on the proliferation of osteoblasts and the regulatory role of the Wnt/β-catenin signaling pathway in cell proliferation, a new method based on endoplasmic reticulum stress and Wnt/β-catenin signaling pathway stress-mediated was proposed. Taking MG63 osteoblasts as the research object, they were inoculated on glass slides (G group), polished titanium sheets (P group), and sandblasted acid-base treated pure titanium sheets (S group). In addition, FSS of 0 dunes/cm2 (static group) and 12 dunes/cm2 (stress group) were given, respectively. Then, quantitative reverse transcription-PCR (RT-qPCR) and western blot were used to detect the mRNA and protein expressions of low-density lipoprotein receptor-related protein 5 (LRP5) and β-catenin in MG63 cells. The results showed that the expression levels of β-catenin mRNA and protein in cells in the stress group were significantly increased ( P < 0.05 ), and the protein expression level of LRP5 was significantly decreased ( P < 0.05 ). The expression level of LRP5 in group S was greatly inhibited, while the expression level of β-catenin was significantly upregulated. Therefore, FSS can stimulate the expression of LRP5 and β-catenin in osteoblasts. Fluid shear stress can promote osteoblast proliferation in vitro; the Wnt/β-catenin signaling pathway is involved in regulating fluid shear stress to promote osteoblast proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.