To improve patient outcome and decrease overall health-care costs, highly sensitive and precise detection of a tumor is required for its accurate diagnosis and efficient therapy; however, this remains a challenge when using conventional single mode imaging. Here, we successfully designed a near-infrared (NIR)-response photothermal therapy (PTT) platform (Au@MSNs-ICG) for the location, diagnosis, and NIR/computer tomography (CT) bimodal imaging-guided PTT of tumor tissues, using gold (Au) nanospheres coated with indocyanine green (ICG)-loaded mesoporous silica nanoparticles (MSNs), which would have high sensitivity and precision. The nanoparticles (NPs) exhibited good monodispersity, fluorescence stability, biocompatibility, and NIR/CT signaling and had a preferable temperature response under NIR laser irradiation in vitro or in vivo. Using a combination of NIR/CT imaging and PTT treatment, the tumor could be accurately positioned and thoroughly eradicated in vivo by Au@MSNs-ICG injection. Hence, the multifunctional NPs could play an important role in facilitating the accurate treatment of tumors in future clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.