In the recent years, the developmental speed of intelligent technology continues to accelerate, and the research on the actual needs of users is also in depth. From the current situation of the clothing industry, how to combine artificial intelligence (AI) technology with clothing fashion has become the focus of customer’s attention. The application of intelligent clothing matching recommendation system (online) can effectively meet the needs of customers in dressing matching, so as to save a lot of time and energy (offline). With the maturity of artificial intelligence, machine learning, and other emerging computational technologies, the intelligent clothing matching system has laid a solid foundation. In this paper, several intelligent clothing matching recommendation systems that have been applied at present are deeply analyzed. Moreover, the basic algorithms and key technologies are elaborated in detail. In addition, the future research direction is found, so that the clothing matching recommendation system can be more personalized, and the comprehensive function is greatly improved in order to bring more ideal benefits.
Spinel structure NiCo2O4 suffers from poor electric conductivity and the resulted electrochemical properties in battery/supercapacitor system are still unsatisfied. In this paper, a free-standing electrode based on in-situ growth NiCo2O4 on carbon cloth has been synthesized by a surfactant-assisted solvothermal method (sodium dodecyl sulfate, SDS). The functional carbon cloth substrate makes unexpected contribution to the electrochemical lithium-ion storage. The assembled supercapacitor possesses ultrahigh pseudocapacitive properties with high mass loading. The specific capacitance of 2832[Formula: see text]F[Formula: see text]g[Formula: see text] has been obtained at 1[Formula: see text]A[Formula: see text]g[Formula: see text] current density with maintaining the high rate capability of 1620[Formula: see text]F[Formula: see text]g[Formula: see text] at 20[Formula: see text]A[Formula: see text]g[Formula: see text]. The obtained nanoneedle NiCo2O4/carbon cloth electrode also maintains a specific capacity of 2000[Formula: see text]mA[Formula: see text]h[Formula: see text]g[Formula: see text] at 40[Formula: see text]mA[Formula: see text]g[Formula: see text] and exceptional rate performance (1504[Formula: see text]mAh[Formula: see text]g[Formula: see text] at 400[Formula: see text]mA[Formula: see text]g[Formula: see text] when tested as anode material in lithium ion batteries.
Aiming at the problems of low image data retrieval accuracy and slow retrieval speed in the existing image database retrieval algorithms, this paper designs a clothing image database retrieval algorithm based on wavelet transform. Firstly, it represents the color consistency vector of clothing image, reflects the composition and distribution of image color through color histogram, quantifies the visual features of clothing image, aggregates them into a fixed size representation vector, and uses the Fair Value (FV) model to complete the collection of clothing image data. Then, the size of the clothing image is adjusted by using the size transformation technology, and the clothing pattern is divided into four moments with the same size. On this basis, the clothing image is discretized with the help of Hu invariant moment to complete the preprocessing of clothing image data. Finally, the generating function of wavelet transform is determined, and a cluster of functions is obtained through translation and expansion. The wavelet filter is decomposed into basic modules, and then, the wavelet transform is studied step by step. The clothing image data are regarded as a signal, split, predicted, and updated and input into the wavelet model, and the retrieval research of clothing image database is completed. The experimental results show that the design of the retrieval algorithm is reasonable, the retrieval data accuracy is high, and the retrieval speed is fast.
In the twenty-first century, every individual visualizes enough technological development on both the electrical and electronics sides. At the same time, they were studying artificial intelligence (AI) concepts and trying to implement them in software and hardware parts. Accuracy can be achieved by using sensors, with a combination of software and hardware. Most of the proposed concepts might respond when both clothing technology and AI are attached. While eliminating sensors from the technological concept, there would be a massive change while enhancing essential comfort and transformation. With the help of human commands, the work can be performed accurately as the machines lag in self-thinking ability. In this case, accuracy is one of the most important things to be noted. Having a shared understanding of such concepts as sensor management, cloth adjustment, and design selection will give extra time-saving moments to complete the work. In this research, a digital filter and a QRS (Quick Response System) detection algorithm were implemented to explore smart clothing through wireless networks and AI technologies. The results proved that the proposed algorithm works better than the existing algorithm by providing 2% increased accuracy.
Carbon-coated lithium vanadium phosphate cathode materials were successfully prepared via an ultra-fast microwave irradiation route in 5 min with using activated carbon as the microwave adsorbent. We aimed to utilize this ultra-fast and facile route to shorten the synthesis procedure for obtaining Li3V2(PO4)3/C cathode material with superior rate capability. To characterize the intrinsic crystal structure and exterior architecture morphology of targeted material, X-ray diffraction pattern (XRD), scanning electron microscopy (SEM) in combined with transmission electron microscopy (TEM) were applied in experiment. The role of microwave irradiation treatment time in affecting the crystalline structure and related lithium-storage electrochemical performance is also investigated in detail. For the optimal Li3V2(PO4)3/C material, it delivered a specific discharge capacity of 110.1 mAh g−1 at a 0.2 C charging/discharging rate while hold a superior cycling stability over 50 cycles when tested at a 1 C rate. The ultra-fast synthesis route should pave a new way to save the energy in the preparation of phosphate-based electroactive cathode material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.