Deafening elicits a deterioration of learned vocalization, in both humans and songbirds. In songbirds, learned vocal plasticity has been shown to depend on the basal ganglia-cortical circuit, but the underlying cellular basis remains to be clarified. Using confocal imaging and electron microscopy, we examined the effect of deafening on dendritic spines in avian vocal motor cortex, the robust nucleus of the arcopallium (RA), and investigated the role of the basal ganglia circuit in motor cortex plasticity. We found rapid structural changes to RA dendritic spines in response to hearing loss, accompanied by learned song degradation. In particular, the morphological characters of RA spine synaptic contacts between 2 major pathways were altered differently. However, experimental disruption of the basal ganglia circuit, through lesions in song-specialized basal ganglia nucleus Area X, largely prevented both the observed changes to RA dendritic spines and the song deterioration after hearing loss. Our results provide cellular evidence to highlight a key role of the basal ganglia circuit in the motor cortical plasticity that underlies learned vocal plasticity.
Background: Increasing concerns emerge regarding the limited success in reproducing data and translating research results into applications. This is a major problem for science, society and economy. Driven by industry or scientific networks, several attempts to combat this crisis are initiated. However, only few measures address the applicability and feasibility of implementation of actions into an academic research environment with limited resources. Methods: Here we propose a strategy catalogue aiming for a quality management system suitable for many research labs, on the example of a cell culture focused laboratory. Our proposal is guided by its inexpensiveness and possibility of rapid installation. For this we used eLabFTW, an electronic lab book, as hub for all other components of our Quality Management System (QMS) and digital storage of lab journals. We introduced Standard Operation Procedures (SOPs) as well as a managed bio bank for safer long-term storage of bio samples. Next, we set up a lab meeting as feedback mechanism for the QMS. Finally, we implemented an automated pipeline to be used for example for drug screens. Results: With this effort we want to reduce individual differences in work techniques, to further improve the quality of our results. Although, just recently established, we can already observe positive outcomes in quality of experimental results, improvements in sample and data storage, stakeholder engagement and even promotion of new scientific discoveries. Conclusions: We believe that our experiences can help to establish a road map to increase value and output of preclinical research in academic labs with limited budget and personnel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.