Accurate prediction of airborne equipment failure rate can provide correct repair and maintenance decisions and effectively establish a health management mechanism. This plays an important role in ensuring the safe use of the aircraft and flight safety. This paper proposes an optimal combination forecasting model, which mixes five single models (Multiple Linear Regression model (MLR), Gray model GM (1, N), Partial Least Squares model (PLS), Artificial Neural Network model (BP), and Support Vector Machine model (SVM)). The combined model and its single model are compared with the other three algorithms. Seven classic comparison functions are used for predictive performance evaluation indicators. The research results show that the combined model is superior to other models in terms of prediction accuracy. This paper provides a practical and effective method for predicting the airborne equipment failure rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.