Expanding mitochondrial base editing tools with broad sequence compatibility is of high need for both research and therapeutic purposes. In this study, we identify a DddA homolog from Simiaoa sunii (Ddd_Ss) which can efficiently deaminate cytosine in DC context in double-stranded DNA (dsDNA). We successfully develop Ddd_Ss-derived cytosine base editors (DdCBE_Ss) and introduce mutations at multiple mitochondrial DNA (mtDNA) loci including disease-associated mtDNA mutations in previously inaccessible GC context. Finally, by introducing a single amino acid substitution from Ddd_Ss, we successfully improve the activity and sequence compatibility of DdCBE derived from DddA of Burkholderia cenocepacia (DdCBE_Bc). Our study expands mtDNA editing tool boxes and provides resources for further screening and engineering dsDNA base editors for biological and therapeutic applications.
Cas12a is a type V-A CRISPR-Cas RNA-guided endonuclease. It cleaves dsDNA at specific site, and then is activated for nonspecific ssDNA cleavage in trans in vitro. The immune function of the trans activity is still unknown. To address this question, we constructed a Cas12a targeting system in Escherichia coli, where Cas12a cleaved a high-copy target plasmid to unleash the trans ssDNA cleavage activity. Then, we analyzed the effect of the Cas12a targeting on a non-target plasmid and a ssDNA phage. The results show that Cas12a efficiently eliminates target plasmid but exerts no impact on the maintenance of the non-target plasmid or plague formation efficiency of the phage. In addition, a two-spacer CRISPR array, which facilitates target plasmid depletion, still has no detectable effect on the non-target plasmid or phage either. Together, the data suggest that the trans ssDNA cleavage of Cas12a does not contribute to immunity in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.