In recent years, nanostructured thermoelectric materials have attracted much attention. However, despite this increasing attention, available information on the thermoelectric properties of single-crystal Si is quite limited, especially for high doping concentrations at high temperatures. In this study, the thermoelectric properties of heavily doped (10 18 -10 20 cm %3 ) n-and p-type single-crystal Si were studied from room temperature to above 1000 K. The figures of merit, ZT, were calculated from the measured data of electrical conductivity, Seebeck coefficient, and thermal conductivity. The maximum ZT values were 0.015 for n-type and 0.008 for p-type Si at room temperature. To better understand the carrier and phonon transport and to predict the thermoelectric properties of Si, we have developed a simple theoretical model based on the Boltzmann transport equation with the relaxation-time approximation.
Novel glass‐ceramics with embedded thermoelectric Bi2Se3 crystals were prepared from glass matrices in the Ge20Se100−xBix (x = 5, 10, 12 mol%) system. Based on DSC results performed at different heating rates, characteristic activation energies (Ec) and Avrami exponents (n) were obtained and analyzed by using Kissinger's relation, Ozawa's method, Augis–Bennett approximation and Matusita–Sakka theory. XRD results showed that pure Bi2Se3 crystalline phase precipitated upon annealing at different temperatures for various time. The crystal size and crystalline fraction in the samples could be tuned by controlling the annealing time.
We here report on the influence of CoSi2 precipitates on the thermoelectric properties of heavily doped p-type Si. A simple self-assembly process using a melt-spinning technique followed by spark plasma sintering is introduced to prepare bulk Si/CoSi2 composites with a nominal composition of (Si0.99B0.01)95Co5. Scanning and transmission electron microscopy observations present clear evidence of a sub-micrometer CoSi2 phase with a size ranging from 50 to 500 nm. These sub-micrometer precipitates resulted in a retention of the high electrical performance of heavily doped Si, while simultaneously reducing thermal conductivity by over 20% compared to a coarse CoSi2 phase (1–10 μm) in a comparative sample prepared by arc melting and spark plasma sintering. As a result, a figure of merit ZT value of 0.21 at 1073 K was achieved in the sub-micrometer Si/CoSi2, an increase of 16% compared with the ZT value for homogeneous p-type Si with a similar carrier concentration. This suggests that the self-assembled sub-micrometer inclusions effectively enhanced the thermoelectric performance of Si-based thermoelectric materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.