The present study identified some new important genomic regions and demonstrated the availability of conditional analysis in dissecting QTLs induced by environmental factors. The high input and low use efficiency of nutrient fertilizers require knowledge of the genetic control of crop reaction to nutrient supplements. In this study, 14 morphological and 8 physiological traits of a set of 182 wheat (Triticum aestivum L.) recombinant inbred lines (Xiaoyan 54 × Jing 411) were investigated in six environments to map quantitative trait loci (QTLs). The influence of nitrogen (N) and phosphorus (P) fertilization on QTL expression was studied by unconditional and conditional analysis. A total of 117 and 30 QTLs were detected by unconditional and conditional analysis, respectively, among which 21 were common for both methods. Thirty-four QTL clusters were identified. Eighteen conserved QTLs (15.4 % of the 117 QTLs) between years, but within nutritional treatment were found. The three major QTLs on chromosomes 2D, 4B and 6A were coincident with Rht8, Rht-B1b and TaGW2, respectively. The other two important intervals on chromosomes 4B and 7A for yield component traits were newly detected QTLs that warrant further study. By conditional analysis, spikelet number per spike was found to be induced by P fertilization mostly, whereas N fertilization had more effects on the expression of the QTLs for nitrogen concentration and utilization efficiency traits. QTLs that respond to N and P interactions were also detected. The results are helpful for understanding the genetic basis of N utilization efficiency in wheat under different N and P supplement environments and provide evidence for the availability of conditional analysis in dissecting QTLs induced by environmental factors.
SummaryPEG-mediated osmotic stress induces premature differentiation of the root apical meristem, which in turn leads to outgrowth of lateral roots and improved tolerance to water stress.
Arsenic (As) contaminated soils and waters are becoming major global environmental and human health risks. The identification of natural hyperaccumulators of As opens the door for phytoremediation of the arsenic contaminant. Pteris vittata is the first identified naturally evolving As hyperaccumulator. More than a decade after its discovery, we have made great progress in understanding the uptake, transport, and detoxification of As in the fern. The molecular mechanisms controlling As accumulation in P. vittata are now beginning to be recognized. In this review, we will try to summarize what we have learned about this As accumulator, with particular emphasis on the current knowledge of the physiological and molecular mechanisms of arsenic phytoremediation. We also discuss the potential strategies to further enhance phytoextraction abilities of P. vittata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.