The authors have performed the Langevin dynamics simulation to investigate the unforced polymer translocation through a narrow nanopore in an impermeable membrane. The effects of solvent quality controlled by the attraction strength lambda of the Lennard-Jones cosine potential between polymer beads and beads on two sides of the membrane on the translocation processes are extensively examined. For polymer translocation under the same solvent quality on both sides of the membrane, the two-dimensional and three-dimensional simulations confirm the scaling law of tautrans approximately N1+2upsilon for the translocation in the good solvent, where tautrans is the translocation time, N is the chain length, and upsilon is the Flory exponent. For the three-dimensional polymer translocation under different solvent qualities on two sides of the membrane, the translocation efficiency may be notably improved. The scaling law between tautrans and N varies from tautrans approximately N1+2upsilon to tautrans approximately N with the increase of the difference of solvent qualities, and the crossover occurs at the theta temperature point, where a scaling law of tautrans approximately N1.27 is found. The simulation results here also show that the translocation time changes from a wide and asymmetric distribution with a long tail to a narrow and symmetric distribution with the increase of the difference of the solvent qualities.
Summary: Phenolic formaldehyde (PF) resins are attractive due to their excellent performances such as high temperature resistance, thermal abrasion, and high yield of carbon conversion. In this communication, PF resin‐based composite hollow spheres were fabricated by in situ favorable absorption and catalytic crosslinking of PF resin within sulfonated polystyrene gel layers of the hollow sphere templates at low temperature. The composite hollow spheres were achieved in one step, avoiding traditional removal of template cores. The intact shell was tuned from double‐layered to single‐layered. Carbon hollow spheres with porous shell were derived by carbonization of the PF composite hollow spheres. Metal/carbon composite hollow spheres were further synthesized by the incorporation of metal within the porous shell, which would be a promising material for catalysis.TEM image of carbon double‐shelled hollow spheres after the PF composite spheres are calcined at 800 °C for 2 h in nitrogen.magnified imageTEM image of carbon double‐shelled hollow spheres after the PF composite spheres are calcined at 800 °C for 2 h in nitrogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.