The tea catechin epigallocatechin-3-gallate (EGCG) proved to be the most potent physiologically active tea compound in vitro. It possesses antioxidant as well as pro-oxidant properties. EGCG has the effect of inducing apoptosis of tumor cells and inhibiting cell proliferation. Whether this effect is associated with the antioxidant or pro-oxidative effects of EGCG affecting the genome stability of normal and cancer cells has not been confirmed. Here, we selected Human normal colon epithelial cells NCM460 and colon adenocarcinoma cells COLO205 to investigate the effects of EGCG (0–40 μg/mL) on the genome stability and cell growth status. Chromosomal instability (CIN), nuclear division index (NDI), and apoptosis was measured by cytokinesis-block micronucleus assay (CBMN), and the expression of core genes in mismatch repair (hMLMLH1 and hMSH2) was examined by RT-qPCR. We found that EGCG significantly reduced CIN and apoptosis rate of NCM460 at all concentrations (5–40 μg/mL) and treatment time, EGCG at 5 μg/mL promoted cell division; EGCG could significantly induce chromosome instability in COLO205 cells and trigger apoptosis and inhibition of cell division. These results suggest that EGCG exhibits different genetic and cytological effects in normal and colon cancer cells.
Folates comprise the essential B9 vitamin that act as cofactors and cosubstrates in one-carbon metabolism for both biosynthesis and methylation of DNA and RNA. Folate deficiency (FD) has been shown to induce chromosomal instability (CIN), yet the underlying mechanisms are poorly understood. Here, we used human NCM460 colon mucosal cells as a model to investigate the effect of FD on spindle assembly checkpoint (SAC), a cell-cycle regulatory pathway preventing CIN during mitosis. Cells were maintained in medium containing 1.36 (FD) and 2260 nM (control, FC) folate for 21 days. CIN was measured by cytokinesis-block micronucleus assay; mitotic infidelity was determined by aberrant mitosis analysis; SAC activity was assessed by nocodazole-challenge assay, and the expression of core SAC genes was examined by real-time quantitative PCR (RT-qPCR). We found that, relative to FC, FD significantly induced CIN in a time-dependent way (P < 0.01). Mitotic cells cultured in FD medium had significant higher frequencies of misalignment, misegregation and spindle multipolarity than those cultured in FC medium (P < 0.01). FD-induced SAC impairment and overriding, resulting premature mitotic exit and cell multinucleation (P < 0.05). Moreover, FD deregulated the expression of several key SAC genes (P < 0.01). Overall, these data are the first to demonstrate that FD substantially compromises SAC network which predisposes cells to mitotic aberrations and CIN. These results establish a new link between folate metabolism and SAC signalling, two pathways that are highly relevant for tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.