Colloidal-quantum-dot (CQD) optoelectronics offer a compelling combination of solution processing and spectral tunability through quantum size effects. So far, CQD solar cells have relied on the use of organic ligands to passivate the surface of the semiconductor nanoparticles. Although inorganic metal chalcogenide ligands have led to record electronic transport parameters in CQD films, no photovoltaic device has been reported based on such compounds. Here we establish an atomic ligand strategy that makes use of monovalent halide anions to enhance electronic transport and successfully passivate surface defects in PbS CQD films. Both time-resolved infrared spectroscopy and transient device characterization indicate that the scheme leads to a shallower trap state distribution than the best organic ligands. Solar cells fabricated following this strategy show up to 6% solar AM1.5G power-conversion efficiency. The CQD films are deposited at room temperature and under ambient atmosphere, rendering the process amenable to low-cost, roll-by-roll fabrication.
Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25°S-61°N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61°C), changes in precipitation (up to AE30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8 g N m À2 yr À1 and 3.1 g S m À2 yr À1), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5 km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFSForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.
Colloidal quantum dot (CQD) photovoltaics offer a promising approach to harvest the near-IR region of the solar spectrum, where half of the sun's power reaching the earth resides. High external quantum efficiencies have been obtained in the visible region in lead chalcogenide CQD photovoltaics. However, the corresponding efficiencies for band gap radiation in the near-infrared lag behind because the thickness of CQD photovoltaic layers from which charge carriers can be extracted is limited by short carrier diffusion lengths. Here, we investigate, using a combination of electrical and optical characterization techniques, ligand passivation strategies aimed at tuning the density and energetic distribution of charge trap states at PbS nanocrystal surfaces. Electrical and optical measurements reveal a more than 7-fold enhancement of the mobility-lifetime product of PbS CQD films treated with 3-mercaptopropionic acid (MPA) in comparison to traditional organic passivation strategies that have been examined in the literature. We show by direct head-to-head comparison that the greater mobility-lifetime products of MPA-treated devices enable markedly greater short-circuit current and higher power conversion efficiency under AM1.5 illumination. Our findings highlight the importance of selecting ligand treatment strategies capable of passivating a diversity of surface states to enable shallower and lower density trap distributions for better transport and more efficient CQD solar cells.
Biochar application to soils may increase carbon (C) sequestration due to the inputs of recalcitrant organic C. However, the effects of biochar application on the soil greenhouse gases (GHGs) fluxes appear variable among many case studies; therefore the efficacy of biochar as a carbon sequestration agent for climate change mitigation remains uncertain. We performed a meta-analysis of 91 published papers with 552 paired comparisons to obtain a central tendency of three main GHG fluxes (i.e., CO 2 , CH 4 , and N 2 O) in response to biochar application. Our results showed that biochar application significantly increased soil CO 2 fluxes by 22.14%, but decreased N 2 O fluxes by 30.92% and did not affect CH 4 fluxes. As a consequence, biochar application may significantly contribute to increased global warming potential (GWP) of total soil GHG fluxes due to the large stimulation of CO 2 fluxes. However, soil CO 2 fluxes were suppressed when biochar was added to fertilized soils, indicating that Accepted ArticleThis article is protected by copyright. All rights reserved. biochar application is unlikely to stimulate CO 2 fluxes in the agriculture sector, in which N fertilizer inputs are common. Responses of soil GHG fluxes mainly varied with biochar feedstock source and soil texture, and the pyrolysis temperature of biochar. Soil and biochar pH, biochar applied rate and latitude also influence soil GHG fluxes, but to a more limited extent.Our findings provide a scientific basis for developing more rational strategies towards widespread adoption of biochar as a soil amendment for climate change mitigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.