Visible-light-driven Cr-doped SrTiO 3 nanocubes were successfully synthesized by hydrothermal method in alkaline KOH conditions. X-ray diffraction spectroscopy (XRD), Raman spectra, x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to characterize the samples, and the Cr-doped SrTiO 3 possess cubic morphology with about 30-50 nm in size, and single-crystal feature. In addition, the Cr-doped SrTiO 3 extended light-harvesting properties to visible-light region which was testified by UV-vis absorption spectra, and excellent charge transfer and separation efficiency were approved by photo fluorescence spectra (PL), electrochemical impedance spectroscopy (EIS) and photocurrent response measurements. Among the synthesized photocatalysts, SrTiO 3 nanocubes doped with 2% Cr by molar ratio exhibits the highest photocatalytic activity, achieving 11.66 μmol of H 2 evolution during 5 h visiblelight irradiation. This study provides a facile and effective way to enhance the performance of SrTiO 3 -based photocatalysts.
Defective Pt/Bi4NbO8Br composites were fabricated via a facile in situ chemical reduction method. The synergistic effect of Pt and oxygen vacancies endows the hybrid photocatalysts with enhanced efficiency for versatile organic pollutant removal.
AbstractThe strategy to improve the photocatalytic removal efficiencies towards organic pollutants is still a challenge for the novel Sillen–Aurivillius perovskite type Bi4NbO8Cl. Herein, we report carbon-supported TiO2/Bi4NbO8Cl (C-TiO2/Bi4NbO8Cl) heterostructures with enhanced charge separation efficiency, which were fabricated via molten-salt flux process. The carbon-supported TiO2 particles were derived from MXene Ti3C2 precursors, and attached on plate-like Bi4NbO8Cl, acting as electron-traps to achieve supressed recombination of photo-induced charges. The improved charge separation confers C-TiO2/Bi4NbO8Cl heterostructures superior photocatalytic performance with 53% higher than pristine Bi4NbO8Cl, towards rhodamine B removal with the help of photo-induced holes. Moreover, the C-TiO2/Bi4NbO8Cl heterostructures can be expanded to deal with other water contaminants, such as methyl orange, ciprofloxacin and 2,4-dichlorophenol with 44, 25 and 13% promotion, respectively, and thus the study offers a series of efficient photocatalysts for water purification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.