High glucose (HG) is one of the basic factors of diabetic nephropathy (DN), which leads to high morbidity and disability. During DN, the expression of glomerular glucose transporter 1 (GLUT1) increases, but the relationship between HG and GLUT1 is unclear. Glomerular mesangial cells (GMCs) have multiple roles in HG‐induced DN. Here, we report prominent glomerular dysfunction, especially GMC abnormalities, in DN mice, which is closely related to GLUT1 alteration. In vivo studies have shown that BBR can alleviate pathological changes and abnormal renal function indicators of DN mice. In vitro, BBR (30, 60 and 90 μmol/L) not only increased the proportion of G1 phase cells but also reduced the proportion of S phase cells under HG conditions at different times. BBR (60 μmol/L) significantly reduced the expression of PI3K‐p85, p‐Akt, p‐AS160, membrane‐bound GLUT1 and cyclin D1, but had almost no effect on total protein. Furthermore, BBR significantly declined the glucose uptake and retarded cyclin D1‐mediated GMC cell cycle arrest in the G1 phase. This study demonstrated that BBR can inhibit the development of DN, which may be due to BBR inhibiting the PI3K/Akt/AS160/GLUT1 signalling pathway to regulate HG‐induced abnormal GMC proliferation and the cell cycle, supporting BBR as a potential therapeutic drug for DN.
Background: Berberine plays a critical role of the glomerular mesangial cells (GMCs) abnormal proliferation during diabetic nephropathy (DN). This study aims to explore the intervention effect of BBR on DN mice and investigate the potential mechanism targeting abnormal GMCs proliferation. Methods: Streptozotocin-induced mice were used to determine the effect of BBR on the renal injury. In vitro, GMCs are cultured in high glucose (30 mmol/L). EdU and MTT assay are used for screening the optimum BBR concentration and intervention time. Flow cytometry is applied to analyze the cell cycle re-distribution. Western blot and RT-qPCR are devoted to studying the relative expression of molecules in PI3K/AKT/AS160/GLUT4 signaling pathway. Additionally, 2-NBDG assay is selected for measuring the glucose uptake of GMCs. Results: HE and PAS staining revealed that the notable mesangial matrix expansion, glomerular hypertrophy and glycogen deposition in diabetic kidney can be alleviated after BBR treatment. Moreover, BBR significantly reduced the positive expression of GLUT4 in tubulointerstitium and glomerular region. EdU shows that high glucose induces the abnormal proliferation of GMCs, which becomes more apparently as time goes on (20h→28h). Meantime, BBR (60 and 90 μmol/L) can not only increase the proportion of G1 phase, but also reduce the proportion of S phase. After 24 h, the same sort of phenomenon has cropped up in BBR (30 μmol/L) group. BBR (60 μmol/L)) significantly degraded the levels of PI3K-p85, p-AKT, p-AS160, and the membrane-GLUT4, while indistinguishable changes of their total protein expressions. Additionally, BBR prominently reduced the glucose uptake and retard the cell cycle of GMCs to stay at G1 phase. Conclusions: The rearrangement effect of BBR on cell cycle is related with PI3K/AKT signaling pathway and GLUT4 trafficking. The key findings of our study collectively indicate that the treatment of GMCs proliferation can be a novel therapeutic strategy in DN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.