RNA editing increases transcriptome diversity through post-transcriptional modifications of RNA. Adenosine deaminases that act on RNA (ADARs) catalyze the adenosine-to-inosine (A-to-I) conversion, the most common type of RNA editing in higher eukaryotes. Caenorhabditis elegans has two ADARs, ADR-1 and ADR-2, but their functions remain unclear. Here, we profiled the RNA editomes of C. elegans at different developmental stages of wild-type and ADAR mutants. We developed a new computational pipeline with a ''bisulfite-seq-mapping-like'' step and achieved a threefold increase in identification sensitivity. A total of 99.5% of the 47,660 A-to-I editing sites were found in clusters. Of the 3080 editing clusters, 65.7% overlapped with DNA transposons in noncoding regions and 73.7% could form hairpin structures. The numbers of editing sites and clusters were highest at the L1 and embryonic stages. The editing frequency of a cluster positively correlated with the number of editing sites within it. Intriguingly, for 80% of the clusters with 10 or more editing sites, almost all expressed transcripts were edited. Deletion of adr-1 reduced the editing frequency but not the number of editing clusters, whereas deletion of adr-2 nearly abolished RNA editing, indicating a modulating role of ADR-1 and an essential role of ADR-2 in A-to-I editing. Quantitative proteomics analysis showed that adr-2 mutant worms altered the abundance of proteins involved in aging and lifespan regulation. Consistent with this finding, we observed that worms lacking RNA editing were short-lived. Taken together, our results reveal a sophisticated landscape of RNA editing and distinct modes of action of different ADARs.
The SREBP pathway controls cellular homeostasis of sterols. The key players in this pathway, Scap and Insig-1/2, are membrane-embedded sterol sensors. 25-hydroxycholesterol (25HC)-dependent association of Scap and Insigs acts as the master switch for the SREBP pathway. Here, we present cryo-EM analysis of the human Scap and Insig-2 complex in the presence of 25HC, with the transmembrane (TM) domains determined at an average resolution of 3.7 Å. The sterol sensing domain (SSD) in Scap and all six TMs in Insig-2 were resolved. A 25HC molecule is sandwiched between the S4-S6 segments in Scap and TMs 3/4 in Insig-2 in the luminal leaflet of the membrane. Unwinding of the middle of the Scap-S4 segment is crucial for 25HC binding and Insig association.
Hepatitis B virus (HBV) infection is a major global health problem. Currently-available therapies are ineffective in curing chronic HBV infection. HBV and its satellite hepatitis D virus (HDV) infect hepatocytes via binding of the preS1 domain of its large envelope protein to sodium taurocholate cotransporting polypeptide (NTCP). Here, we developed novel human monoclonal antibodies that block the engagement of preS1 with NTCP and neutralize HBV and HDV with high potency. One antibody, 2H5-A14, functions at picomolar level and exhibited neutralization-activity-mediated prophylactic effects. It also acts therapeutically by eliciting antibody-Fc-dependent immunological effector functions that impose durable suppression of viral infection in HBV-infected mice, resulting in reductions in the levels of the small envelope antigen and viral DNA, with no emergence of escape mutants. Our results illustrate a novel antibody-Fc-dependent approach for HBV treatment and suggest 2H5-A14 as a novel clinical candidate for HBV prevention and treatment of chronic HBV infection.
a b s t r a c tSeveral miRNAs have been implicated in the development and progression of osteosarcoma (OS). In this study, we found that miR-16 is downregulated in OS cell lines and tissues. Overexpression of miR-16 suppresses OS cell proliferation and tumor growth in nude mice. Furthermore, we confirmed that IGF1R is a direct target of miR-16. Mechanistic investigation revealed that miR-16 overexpression inhibits the Raf1-MEK1/2-ERK1/2 pathway. In clinical specimens, IGF1R levels inversely correlate with miR-16 expression. Our results provide significant clues regarding the role of miR-16 as a tumor suppressor by targeting IGF1R in OS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.