Objective: Osteoarthritis (OA) is a common degenerative joint disease, and animal models have proven pivotal in investigating this disease. This study aimed to develop a primate model of OA that may be more relevant to research studies on OA in humans.Method: Twelve female rhesus macaques were randomly divided into three groups. Four animals were untreated (Control group); four were subjected to the modified Hulth method, involving cutting of the anterior and posterior cruciate ligaments, and transecting the meniscus (Hulth group); and four were subjected to the modified Hulth method combined with cartilage defect (MHCD group). Each primate was subjected to motor ability tests, and underwent arthroscopic, radiographic, morphological, and pathological observation of the knee joints at various times for up to 180 days.Results: Motor ability on Day 180 was significantly lower in the MHCD group than in the Control (p<0.01) and Hulth (p<0.05) groups. Radiographic and morphological examination showed that the severity of knee joint deformity and articular cartilage injury were greater in the MHCD group than in the other groups. Pathological examination showed that cartilage thickness was significantly lower in the MHCD group than in the other groups at the same time points. The Mankin score on Day 180 was markedly higher in the MHCD group than in the Hulth (p<0.05) and Control (p<0.001) groups.Conclusion: The MHCD model of OA closely resembles the pathophysiological processes of spontaneous knee OA in humans. The time required to develop knee OA is shorter using the MHCD model than using the Hulth method.
Remodeling of the extracellular matrix (ECM), which provides structural and biochemical support for surrounding cells, is vital for adipose tissue regeneration after autologous fat grafting. Rapid and high-quality ECM remodeling can improve the retention rate after fat grafting by promoting neovascularization, regulating stem cells differentiation, and suppressing chronic inflammation. The degradation and deposition of ECM are regulated by various factors, including hypoxia, blood supply, inflammation, and stem cells. By contrast, ECM remodeling alters these regulatory factors, resulting in a dynamic relationship between them. Although researchers have attempted to identify the cellular sources of factors associated with tissue regeneration and regulation of the microenvironment, the factors and mechanisms that affect adipose tissue ECM remodeling remain incompletely understood. This review describes the process of adipose ECM remodeling after grafting and summarizes the factors that affect ECM reconstruction. Also, this review provides an overview of the clinical methods to avoid poor ECM remodeling. These findings may provide new ideas for improving the retention of adipose tissue after fat transplantation.
Due to the low percentage of collagen, the rigid support capacity of fat grafts remains unsatisfactory for some clinical applications. In this study, we evaluated a strategy in which adipose matrix complex (AMC) was collected via a mechanical process and transplanted for supportive filling of the face. Our AMC samples were collected from adipose tissue by a filter device consisting of a sleeve, three internal sieves, and a filter bag (100 mesh). AMC derived from adipose tissue had fewer cells than Coleman fat, but much higher levels of collagen and stiffness. Retention rates 90 days after transplantation in nude mice were higher for AMC than for Coleman fat (75±7.5% vs. 42±13.5%; P < 0.05). In addition, AMC maintained a higher stiffness (~6 kPa vs. ~2 kPa; P < 0.01) and stably retained a higher level of collagen. Our findings demonstrate that mechanical collection of AMC from adipose tissue is a practical method for improving fat graft retention and rigid support. This strategy has the potential to improve the quality of lipoaspirates for patients requiring rigid supportive filling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.