Currently, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, formerly known as 2019-nCoV, the causative pathogen of Coronavirus Disease 2019 (COVID-19)) has rapidly spread across China and around the world, causing an outbreak of acute infectious pneumonia. No specific anti-virus drugs or vaccines are available for the treatment of this sudden and lethal disease. The supportive care and non-specific treatment to ameliorate the symptoms of the patient are the only options currently. At the top of these conventional therapies, greater than 85% of SARS-CoV-2 infected patients in China are receiving Traditional Chinese Medicine (TCM) treatment. In this article, relevant published literatures are thoroughly reviewed and current applications of TCM in the treatment of COVID-19 patients are analyzed. Due to the homology in epidemiology, genomics, and pathogenesis of the SARS-CoV-2 and SARS-CoV, and the widely use of TCM in the treatment of SARS-CoV, the clinical evidence showing the beneficial effect of TCM in the treatment of patients with SARS coronaviral infections are discussed. Current experiment studies that provide an insight into the mechanism underlying the therapeutic effect of TCM, and those studies identified novel naturally occurring compounds with anti-coronaviral activity are also introduced.
Viral proteases are essential for pathogenesis and virulence of severe acute respiratory syndrome coronavirus (SARS-CoV). Little information is available on SARS-CoV papain-like protease 2 (PLP2), and development of inhibitors against PLP2 is attractive for antiviral therapy. Here, we report the characterization of SARS-CoV PLP2 (from residues 1414 to 1858) purified from baculovirus-infected insect cells. We demonstrate that SARS-CoV PLP2 by itself differentially cleaves between the amino acids Gly180 and Ala181, Gly818 and Ala819, and Gly2740 and Lys2741 of the viral polypeptide pp1a, as determined by reversed-phase high-performance liquid chromatography analysis coupled with mass spectrometry. This protease is especially selective for the P1, P4, and P6 sites of the substrate. The study demonstrates, for the first time among coronaviral PLPs, that the reaction mechanism of SARS-CoV PLP2 is characteristic of papain and compatible with the involvement of the catalytic dyad (Cys)-S(-)/(His)-Im(+)H ion pair. With a fluorogenic inhibitor-screening platform, we show that zinc ion and its conjugates potently inhibit the enzymatic activity of SARS-CoV PLP2. In addition, we provided evidence for evolutionary reclassification of SARS-CoV. The results provide important insights into the biochemical properties of the coronaviral PLP family and a promising therapeutic way to fight SARS-CoV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.