DNA i-motif structures have been found in telomeric, centromeric DNA and many in the promoter region of oncogenes; thus they might be attractive targets for gene-regulation processes and anticancer therapeutics. We demonstrate in this work that i-motif structures can be stabilized by graphene quantum dots (GQDs) under acidic conditions, and more importantly GQDs can promote the formation of the i-motif structure under alkaline or physiological conditions. We illustrate that the GQDs stabilize the i-motif structure through end-stacking of the bases at its loop regions, thus reducing its solvent-accessible area. Under physiological or alkaline conditions, the end-stacking of GQDs on the unfolded structure shifts the equilibrium between the i-motif and unfolded structure toward the i-motif structure, thus promoting its formation. The possibility of fine-tuning the stability of the i-motif and inducing its formation would make GQDs useful in gene regulation and oligonucleotide-based therapeutics.
With the increasing aging population as well as health concerns, chronic heart disease has become the focus of public attention. A comfortable, low-powered, and wearable electrocardiogram (ECG) system for continuously monitoring the elderly's ECG signals over several hours is important for preventing cardiovascular diseases. Traditional ECG monitoring apparatus is often inconvenient to carry, has many electrodes to attach to the chest, and has a high-power consumption. There is also a challenge to design an electrocardiograph that satisfies requirements such as comfort, confinement, and compactness. Based on these considerations, this study presents a biosensor acquisition system for wearable, ubiquitous healthcare applications using three textile electrodes and a recording circuit specialized for ECG monitoring. In addition, several methods were adopted to reduce the power consumption of the device. The proposed system is composed of three parts: (1) an ECG analog front end (AFE), (2) digital signal processing and micro-control circuits, and (3) system software. Digital filter methods were used to eliminate the baseline wander, skin contact noise, and other interfering signals. A comparative study was conducted using this system to observe its performance with two commercial Holter monitors. The experimental results demonstrated that the total power consumption of this proposed system in a full round of ECG acquisition was only 29.74 mW. In addition, this low-power system performed well and stably measured the heart rate with an accuracy of 98.55 %. It can also contain a real-time dynamic display with organic light-emitting diodes (OLED) and wirelessly transmit information via a Bluetooth 4.0 module.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.