We show that the Laplacian on the loop space over a class of Riemannian manifolds has a spectral gap. The Laplacian is defined using the Levi-Civita connection, the Brownian bridge measure and the standard Bismut tangent spaces.
The aim of the paper is to study the pinned Wiener measure on the loop space over a simply connected compact Riemannian manifold together with a Hilbert space structure and the Ornstein–Uhlenbeck operator d*d. We give a concrete estimate for the weak Poincaré inequality, assuming positivity of the Ricci curvature of the underlying manifold. The order of the rate function is s−α for any α > 0
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.