ObjectiveAPOBEC3B (A3B), a cytidine deaminase acting as a contributor to the APOBEC mutation pattern in many kinds of tumours, is upregulated in patients with hepatocellular carcinoma (HCC). However, APOBEC mutation patterns are absent in HCC. The mechanism of how A3B affects HCC progression remains elusive.DesignA3B promoter luciferase reporter and other techniques were applied to elucidate mechanisms of A3B upregulation in HCC. A3B overexpression and knockdown cell models, immunocompetent and immune-deficient mouse HCC model were conducted to investigate the influence of A3B on HCC progression. RNAseq, flow cytometry and other techniques were conducted to analyse how A3B modulated the cytokine to enhance the recruitment of myeloid-derived suppressor cells (MDSCs) and tumour-associated macrophages (TAMs).ResultsA3B upregulation through non-classical nuclear factor-κB (NF-κB)signalling promotes HCC growth in immunocompetent mice, associated with an increase of MDSCs, TAMs and programmed cell death1 (PD1) exprssed CD8+ T cells. A CCR2 antagonist suppressed TAMs and MDSCs infiltration and delayed tumour growth in A3B and A3BE68Q/E255Q expressing mouse tumours. Mechanistically, A3B upregulation in HCC depresses global H3K27me3 abundance via interaction with polycomb repressor complex 2 (PRC2) and reduces an occupancy of H3K27me3 on promoters of the chemokine CCL2 to recruit massive TAMs and MDSCs.ConclusionOur observations uncover a deaminase-independent role of the A3B in modulating the HCC microenvironment and demonstrate a proof for the concept of targeting A3B in HCC immunotherapy.
Pregnant women are often complicated with diseases that require treatment with medication. Most drugs administered to pregnant women are off-label without the necessary dose, efficacy, and safety information. Knowledge concerning drug transfer across the placental barrier is essential for understanding fetal drug exposure and hence drug safety and efficacy to the fetus. Transporters expressed in the placenta, including adenosine triphosphate (ATP)-binding cassette efflux transporters and solute carrier uptake transporters, play important roles in determining drug transfer across the placental barrier, leading to fetal exposure to the drugs. In this review, we provide an update on placental drug transport, including in vitro cell/tissue, ex vivo human placenta perfusion, and in vivo animal studies that can be used to determine the expression and function of drug transporters in the placenta as well as placental drug transfer and fetal drug exposure. We also describe how the knowledge of placental drug transfer through passive diffusion or active transport can be combined with physiologically based pharmacokinetic modeling and simulation to predict systemic fetal drug exposure. Finally, we highlight knowledge gaps in studying placental drug transport and predicting fetal drug exposure and discuss future research directions to fill these gaps.
Δ 9 -tetrahydrocannabinol (THC) is the primary pharmacological active constituent of cannabis. 11-hydroxy-THC (11-OH-THC) and 11-nor-9-carboxy-THC (THC-COOH) are respectively the active and nonactive circulating metabolites of THC in humans. While previous animal studies reported that THC could be a substrate of mouse P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), we have shown, in vitro, that only THC-COOH is a weak substrate of human BCRP, but not of P-gp. To confirm these findings and to investigate the role of P-gp and/or Bcrp in the maternal-fetal disposition of THC and its metabolites, we administrated 3 mg/kg THC retro-orbitally to FVB wild-type (WT), P-gp -/-, Bcrp -/or P-gp -/-/Bcrp -/-pregnant mice on gestation-day 18 and estimated the area under the concentration-time curve (AUC) of the cannabinoids in the maternal plasma, maternal brain, placenta, and fetus, as well as the tissue/maternal plasma AUC geometric mean ratios (GMRs) using a pooled data bootstrap approach. We found that the dose-normalized maternal plasma AUCs of THC in P-gp -/and P-gp -/-/Bcrp -/-mice, and the placenta-to-maternal plasma AUC GMR of THC in Bcrp -/-mice were 279%, 271%, and 167% of those in WT mice, respectively. Surprisingly, the tissue-tomaternal plasma AUC GMRs of THC and its major metabolites in the maternal brain, placenta, or fetus in P-gp -/-, Bcrp -/or P-gp -/-/Bcrp -/-mice were 28-78% of those in WT mice. This study revealed that P-gp and Bcrp do not play a role in limiting maternal brain and fetal exposure to THC and its major metabolites in pregnant mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.