The influence of temperature, pH value, and solvent on the degradation behavior of astilbin was studied by HPLC. Results showed that the degradation of astilbin was pH and temperature dependent, and the isomerization of astilbin to its three stereoisomers was found. The degradation process followed the first-order kinetics model, and the degradation rate k values increased, whereas half-life (t1/2) values declined with the rise of pH and temperature. The stability of astilbin was related to its B-ring substitution. Engeletin with a 4'-hydroxy-substituted B-ring was more stable than astilbin with a 3',4'-dihydroxy-substituted B-ring. The stability of astilbin differed depending on the solvent and followed the order 50% ethanol > ethanol > methanol > 50% methanol > water. In cultural media, astilbin was less stable than in water, which may be related to the presence of metal ions. The stability results of astilbin were confirmed in the extraction of dihydroflavonols from Rhizoma Smilacis Glabrae and may have a guiding function in turtle jelly production.
The complexation of astilbin with α-, β-, and γ-cyclodextrin (CD) was studied by phase solubility test and UV-vis spectral titration. Complexation with CDs gradually decreased the absorbance of astilbin at 291 nm and obviously increased its water solubility. The formation constant (K(a)) between astilbin and the three CDs was calculated. The stability of astilbin complexes increased in the order α-CD < γ-CD < β-CD, attributed to the CDs' cavity size. Temperature studies showed that the K(a) value decreased along with the rise of temperature. The negative values of enthalpy and entropy during complexation indicated that the complexation process was enthalpy-controlled. In alkaline medium isomerization and decomposition of astilbin were found; however, the addition of CDs significantly improved its stability through complexation. The solubility of astilbin in β-CD microcapsules prepared by the freeze-drying method was enhanced by 122.1-fold, and its dissolution profile was improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.