Comprehensive analysis of multiple data sets can identify potential driver genes for various cancers. In recent years, driver gene discovery based on massive mutation data and gene interaction networks has attracted increasing attention, but there is still a need to explore combining functional and structural information of genes in protein interaction networks to identify driver genes. There, we propose a network embedding framework combining functional and structural information to identify driver genes. Firstly, we combine the mutation data and gene interaction networks to construct mutation integration network using network propagation algorithm. Secondly, the struc2vec model is used for extracting gene features from the mutation integration network, which contains both genes functional and structural information. Finally, machine learning algorithms are utilized to identify the driver genes. At the same time, we also conduct comparative analysis of three gene interaction networks, three gene standard sets, and five machine learning algorithms. Compared with the previous four excellent methods, our method can find gene pairs that are distant from each other through structural similarities and has better performance in identifying driver genes for 12 cancers in the cancer genome atlas. Our framework provides a new perspective for feature selection to identify novel driver genes.
Cancer is a complex disease caused by genomic and epigenetic alterations; hence, identifying meaningful cancer drivers is an important and challenging task. Most studies have detected cancer drivers with mutated traits, while few studies consider multiple omics characteristics as important factors. In this study, we present a framework to analyze the effects of multi-omics characteristics on the identification of driver genes. We utilize four machine learning algorithms within this framework to detect cancer driver genes in pan-cancer data, including 75 characteristics among 19,636 genes. The 75 features are divided into four types and analyzed using Kullback–Leibler divergence based on CGC genes and non-CGC genes. We detect cancer driver genes in two different ways. One is to detect driver genes from a single feature type, while the other is from the top N features. The first analysis denotes that the mutational features are the best characteristics. The second analysis reveals that the top 45 features are the most effective feature combinations and superior to the mutational features. The top 45 features not only contain mutational features but also three other types of features. Therefore, our study extends the detection of cancer driver genes and provides a more comprehensive understanding of cancer mechanisms.
Comprehensive analysis of multiple data sets can identify potential driver genes for various cancers. In recent years, driver gene discovery based on massive mutation data and gene interaction networks has attracted increasing attention, but there is still a need to explore combining functional and structural information of genes in protein interaction networks to identify driver genes. Therefore, we propose a network embedding framework combining functional and structural information to identify driver genes. Firstly, we combine the mutation data and gene interaction networks to construct mutation integration network using network propagation algorithm. Secondly, the struc2vec model is used for extracting gene features from the mutation integration network, which contains both gene's functional and structural information. Finally, machine learning algorithms are utilized to identify the driver genes. Compared with the previous four excellent methods, our method can find gene pairs that are distant from each other through structural similarities and has better performance in identifying driver genes for 12 cancers in the cancer genome atlas. At the same time, we also conduct a comparative analysis of three gene interaction networks, three gene standard sets, and five machine learning algorithms. Our framework provides a new perspective for feature selection to identify novel driver genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.