Abstract-While recognition of most facial variations, such as identity, expression, and gender, has been extensively studied, automatic age estimation has rarely been explored. In contrast to other facial variations, aging variation presents several unique characteristics which make age estimation a challenging task. This paper proposes an automatic age estimation method named AGES (AGing pattErn Subspace). The basic idea is to model the aging pattern, which is defined as the sequence of a particular individual's face images sorted in time order, by constructing a representative subspace. The proper aging pattern for a previously unseen face image is determined by the projection in the subspace that can reconstruct the face image with minimum reconstruction error, while the position of the face image in that aging pattern will then indicate its age. In the experiments, AGES and its variants are compared with the limited existing age estimation methods (WAS and AAS) and some well-established classification methods (kNN, BP, C4.5, and SVM). Moreover, a comparison with human perception ability on age is conducted. It is interesting to note that the performance of AGES is not only significantly better than that of all the other algorithms, but also comparable to that of the human observers.
Abstract-Although multi-label learning can deal with many problems with label ambiguity, it does not fit some real applications well where the overall distribution of the importance of the labels matters. This paper proposes a novel learning paradigm named label distribution learning (LDL) for such kind of applications. The label distribution covers a certain number of labels, representing the degree to which each label describes the instance. LDL is a more general learning framework which includes both single-label and multi-label learning as its special cases. This paper proposes six working LDL algorithms in three ways: problem transformation, algorithm adaptation, and specialized algorithm design. In order to compare the performance of the LDL algorithms, six representative and diverse evaluation measures are selected via a clustering analysis, and the first batch of label distribution datasets are collected and made publicly available. Experimental results on one artificial and fifteen real-world datasets show clear advantages of the specialized algorithms, which indicates the importance of special design for the characteristics of the LDL problem.
Age Specific Human-Computer Interaction (ASHCI) has vast potential applications in daily life. However, automatic age estimation technique is still underdeveloped. One of the main reasons is that the aging effects on human faces present several unique characteristics which make age estimation a challenging task that requires non-standard classification approaches. According to the speciality of the facial aging effects, this paper proposes the AGES (AGing pattErn Subspace) method for automatic age estimation. The basic idea is to model the aging pattern, which is defined as a sequence of personal aging face images, by learning a representative subspace. The proper aging pattern for an unseen face image is then determined by the projection in the subspace that can best reconstruct the face image, while the position of the face image in that aging pattern will indicate its age. The AGES method has shown encouraging performance in the comparative experiments either as an age estimator or as an age range estimator.
Convolutional neural networks (ConvNets) have achieved excellent recognition performance in various visual recognition tasks. A large labeled training set is one of the most important factors for its success. However, it is difficult to collect sufficient training images with precise labels in some domains, such as apparent age estimation, head pose estimation, multilabel classification, and semantic segmentation. Fortunately, there is ambiguous information among labels, which makes these tasks different from traditional classification. Based on this observation, we convert the label of each image into a discrete label distribution, and learn the label distribution by minimizing a Kullback-Leibler divergence between the predicted and ground-truth label distributions using deep ConvNets. The proposed deep label distribution learning (DLDL) method effectively utilizes the label ambiguity in both feature learning and classifier learning, which help prevent the network from overfitting even when the training set is small. Experimental results show that the proposed approach produces significantly better results than the state-of-the-art methods for age estimation and head pose estimation. At the same time, it also improves recognition performance for multi-label classification and semantic segmentation tasks.
Abstract-When performing visualization and classification, people often confront the problem of dimensionality reduction. Isomap is one of the most promising nonlinear dimensionality reduction techniques. However, when Isomap is applied to real-world data, it shows some limitations, such as being sensitive to the noise. In this paper, an improved version of Isomap, namely S-Isomap, is proposed. S-Isomap utilizes class information to guide the procedure of nonlinear dimensionality reduction. Such a kind of procedure is called supervised nonlinear dimensionality reduction. In S-Isomap, the neighborhood graph of the input data is constructed according to a certain kind of dissimilarity between data points, which is specially designed to integrate the class information. The dissimilarity has several good properties which help to discover the true neighborhood of the data, and thus makes S-Isomap a robust technique for both visualization and classification, especially for real-world problems. In the visualization experiments, S-Isomap is compared with Isomap, LLE and WeightedIso. The results show that S-Isomap performs the best. In the classification experiments, S-Isomap is used as a preprocess of classification and compared with Isomap, WeightedIso, as well as some other well-established classification methods including K nearest neighbor classifier, BP neural network, J4.8 decision tree and SVM. The results reveal that S-Isomap excels Isomap and WeightedIso in classification and is highly competitive with those well-known classification methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.