As a promising area in machine learning, multi-task learning (MTL) aims to improve the performance of multiple related learning tasks by leveraging useful information among them. In this paper, we give an overview of MTL by first giving a definition of MTL. Then several different settings of MTL are introduced, including multi-task supervised learning, multi-task unsupervised learning, multi-task semi-supervised learning, multi-task active learning, multi-task reinforcement learning, multi-task online learning and multi-task multi-view learning. For each setting, representative MTL models are presented. In order to speed up the learning process, parallel and distributed MTL models are introduced. Many areas, including computer vision, bioinformatics, health informatics, speech, natural language processing, web applications and ubiquitous computing, use MTL to improve the performance of the applications involved and some representative works are reviewed. Finally, recent theoretical analyses for MTL are presented.
Age Specific Human-Computer Interaction (ASHCI) has vast potential applications in daily life. However, automatic age estimation technique is still underdeveloped. One of the main reasons is that the aging effects on human faces present several unique characteristics which make age estimation a challenging task that requires non-standard classification approaches. According to the speciality of the facial aging effects, this paper proposes the AGES (AGing pattErn Subspace) method for automatic age estimation. The basic idea is to model the aging pattern, which is defined as a sequence of personal aging face images, by learning a representative subspace. The proper aging pattern for an unseen face image is then determined by the projection in the subspace that can best reconstruct the face image, while the position of the face image in that aging pattern will indicate its age. The AGES method has shown encouraging performance in the comparative experiments either as an age estimator or as an age range estimator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.