A hypoxic microenvironment plays a critical role in the development and progression of tumors. The epithelial to mesenchymal transition (EMT) is a process by which epithelial cells lose their polarity and are converted to a mesenchymal phenotype, which is regarded as a critical event in morphogenetic changes during embryonic development, wound healing, and cancer metastasis. Recent advances in our understanding of the molecular pathways that govern the association of hypoxia with malignant tumors point to the epithelial to mesenchymal transition (EMT). The hypoxic microenvironment common to cancer cells emerges as an important factor in the induction of a pathological EMT, which is a key link in cancer progression. This review presents the potential molecular mechanisms underlying the hypoxia/HIF-dependent regulation of the EMT in cancer.
Vasculogenic mimicry (VM), a new pattern of tumor microcirculation, is important for the growth and progression of tumors. Epithelial-mesenchymal transition (EMT) is pivotal in malignant tumor progression and VM formation. With increasing knowledge of cancer stem cell (CSC) phenotypes and functions, increasing evidence suggests that CSCs are involved in VM formation. Recent studies have indicated that EMT is relevant to the acquisition and maintenance of stem cell-like characteristics. Thus, in this review we discuss the correlation between CSCs, EMT and VM formation.
Noncoding RNAs (ncRNAs) have been demonstrated to closely associate with gene regulation and encompass the well-known microRNAs (miRNAs), as well as the most recently acknowledged long noncoding RNAs (lncRNAs). Current evidence indicates that lncRNAs can interact with miRNAs and these interactions play crucial roles in cancer metastasis, through regulating critical events especially the epithelial-mesenchymal transition (EMT). This review summarizes the types of lncRNA-miRNA crosstalk identified to-date and discusses their influence on the epithelial-mesenchymal plasticity and clinical metastatic implication.
The epithelial–mesenchymal transition (EMT) has been reported to be an important program that is often activated during the process of cancer invasion and metastasis. Cancer stem cells (CSCs) that can initiate and maintain cancer are also involved in invasion and metastasis of cancer. Recently, insights into the molecular mechanisms and functional features of mesenchymal cells have been greatly colored by findings that some of them have been endowed with the self-renewal trait associated with normal tissue stem cells and CSCs. Among cancer cells experiencing EMT, only some of the most competent CSCs will succeed in planting in another organ. In this paper, we review the molecular mechanism behind the link of EMT and CSCs in cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.