Enterocytozoon bieneusi is a zoonotic fungal pathogen with a high degree of host diversity that can parasitize many animals, including humans. Pigs may play an important role in the epidemiology of E. bieneusi as reservoir hosts. Nevertheless, the genotypes of E. bieneusi in pigs in China remain poorly understood. The aim of this study was to determine the prevalence of E. bieneusi infection amongst pigs raised on farms from four cities of Hainan Province, using nested polymerase chain reaction (PCR) of the partial small subunit of the ribosomal RNA gene, and to identify genotypes of E. bieneusi isolates based on sequence analysis of the ribosomal internal transcribed spacer (ITS) region. Among 188 stool samples, E. bieneusi was detected in 46.8% (88/188). Eight genotypes including four known (EbpA, CS-4, MJ14, and CHG19) and four novel (HNP-I -HNP-IV) genotypes were identified. Using phylogenetic analysis, genotypes EbpA, CS4, CHG19, HNP-III, and HNP-IV were clustered into zoonotic Group 1, while the remaining three genotypes (MJ14, HNP-I, and HNP-II) clustered into Group 10. The high prevalence of zoonotic genotypes of E. bieneusi among pigs suggests that pig farming is a potential source of human infection. Additionally, this is the first identification of genotypes in Group 10 in pigs indicating unique epidemic features of E. bieneusi in pigs in Hainan Province, the southernmost part of China.
Enterocytozoon bieneusi is an intestinal pathogen that infects a wide range of species, including humans. Cattle constitute an important host for E. bieneusi; however, there is a scarcity of information on the prevalence and genotyping of E. bieneusi in cattle in the Hainan Province of China. In this study, PCR analysis of 314 fecal samples from cattle in six cities of Hainan was performed for genotype identification. The average prevalence of E. bieneusi in these animals was 9.9% (31/314), and ranged from 0.0% (0/12) to 20.5% (8/39). Five known genotypes – EbpC (n = 14), BEB4 (n = 12), J (n = 2), I (n = 1), and CHG5 (n = 1) – and a novel genotype: HNC-I (n = 1) – were identified. Genotypes EbpC and HNC-I were placed in zoonotic Group 1, and the remaining four genotypes (BEB4, J, I, and CHG5) were placed in Group 2. Since 93.5% of the genotypes found in the cattle (29/31) (EbpC, BEB4, J, and I) have previously been found in humans, these genotypes are probably involved in the transmission of microsporidiosis to humans.
Enterocytozoon bieneusi is an important pathogen commonly found in humans and animals. Farmed animals with close contact to humans are important hosts of E. bieneusi. The role of goats in the transmission of E. bieneusi, however, remains unclear. In this study, 341 fresh fecal samples of black goats were collected from five locations in Hainan Province, China. Enterocytozoon bieneusi was identified and genotyped by sequences of the internal transcribed spacer (ITS) region. Phylogenetic analysis was performed by constructing a neighbor-joining tree of the ITS gene sequences. The average prevalence of E. bieneusi in black goats was 24.0% (82/341) with rates ranging from 6.3% (4/63) to 37.2% (32/86) across the locations (χ2 = 17.252, p < 0.01). Eight genotypes of E. bieneusi were identified, including six known genotypes: CHG5 (n = 47); CHG3 (n = 23); CHG2 (n = 4); CM21 (n = 3); D (n = 2); and AHG1 (n = 1), and two novel genotypes termed HNG-I (n = 1) and HNG-II (n = 1). In the phylogenetic tree, genotype D was clustered into Group 1 and the other identified genotypes were included in Group 2. This represents the first report identifying E. bieneusi in black goats from Hainan Province, with a high prevalence and wide occurrence demonstrated. The two new genotypes identified provide additional insights into the genotypic variations in E. bieneusi. Due to the small percentage of zoonotic genotypes in these animals, there is minimal risk of zoonotic transmission of E. bieneusi.
Epigenetic processes in the development of skeletal muscle have been appreciated for over a decade. DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Up to now, the importance of epigenetic marks in the regulation of Pax7 and myogenic regulatory factors (MRFs) expression is far less explored. In the present study, semi-quantitative the real-time polymerase chain reaction (RT-PCR) analyses showed MyoD and Myf5 were expressed in activated and quiescent C2C12 cells. MyoG was expressed in a later stage of myogenesis. Pax7 was weakly expressed in differentiated C2C12 cells. To further understand the regulation of expression of these genes, the DNA methylation status of Pax7, MyoD, and Myf5 was determined by bisulfite sequencing PCR. During the C2C12 myoblasts fusion process, the changes of promoter and exon 1 methylation of Pax7, MyoD, and Myf5 genes were observed. In addition, an inverse relationship of low methylation and high expression was found. These results suggest that DNA methylation may be an important mechanism regulating Pax7 and MRFs transcription in cell myogenic differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.