Proton conducting Y‐doped BaZrO3, BaCeO3 and their solid solutions are receiving increasing attention due to their promising application as electrolytes in ceramic fuel cells and electrolysis cells. However, the literature indicates a clear tendency that the performance of the cells increases with increasing Ce content in the electrolyte. In this work, to elucidate this phenomenon, a systematic work is performed on investigating the phase, hydration, and transport behaviors of BaZr0.8−xCexY0.2O3−δ (BZCY20). The results reveal that in the temperature range between 500 and 700 °C, with increasing Ce content, the dehydration temperature elevates and the proton concentration increases, showing that the Ce component favors the stabilization of protons. Furthermore, the transport number of hole conduction decreases, whereas the transport number of ionic conduction increases with the increasing Ce content. By further separating the contribution of oxide ions and protons, it is found that the oxide ion conductivity increases with the increasing Ce content at higher temperatures of 600 and 700 °C. Such decreased hole conductivity and increased oxide ion conductivity result in the enhancement of the ionic conduction of BZCY20 with increasing Ce content, and therefore improve the performance of fuel cells and electrolysis cells.
Proton exchange membranes with short-pathway through-plane orientated proton conductivity are highly desirable for use in proton exchange membrane fuel cells. Magnetic field is utilized to create oriented structure in proton exchange membranes. Previously, this has only been carried out by proton nonconductive metal oxide-based fillers. Here, under a strong magnetic field, a proton-conducting paramagnetic complex based on ferrocyanide-coordinated polymer and phosphotungstic acid is used to prepare composite membranes with highly conductive through-plane-aligned proton channels. Gratifyingly, this strategy simultaneously overcomes the high water-solubility of phosphotungstic acid in composite membranes, thereby preventing its leaching and the subsequent loss of membrane conductivity. The ferrocyanide groups in the coordinated polymer, via redox cycle, can continuously consume free radicals, thus helping to improve the long-term in situ membrane durability. The composite membranes exhibit outstanding proton conductivity, fuel cell performance and durability, compared with other types of hydrocarbon membranes and industry standard Nafion® 212.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.