Using a combination of systematic experiments and Monte Carlo simulations, this report demonstrates that the distribution of neutral solvent has a strong impact on the quality and kinetics of the self-assembly of block copolymers in thin films. Both methyl ethyl ketone (MEK, a good solvent) and acetone (a relatively poor solvent) were used for the solvent vapor annealing (SVA) of thin films of poly(2vinylpyridine)-block-polystyrene-block-poly(2-vinylpyridine) (VSV) triblock copolymer. Acetone, the poorer solvent, accumulated at the interface of the VSV domains, while MEK was distributed more uniformly throughout the VSV. As a result, acetone screened the interactions between the blocks of the copolymer more than MEK. Because MEK afforded less screening of the different blocks, solvent annealing with MEK led to self-assembly of lower molecular weight VSV triblock copolymers than was possible with acetone. Solvent annealing with MEK also led to slower self-assembly kinetics and smaller correlation lengths in the assembled pattern compared to solvent annealing with acetone. Finally, long-range ordered structures of low molecular weight VSV triblock copolymer on a chemical pattern via directed self-assembly was demonstrated with 6× density multiplication by annealing in MEK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.