Accurate cell type identification is a key and rate-limiting step in single cell data analysis. Single cell references with comprehensive cell types, reproducible and functional validated cell identities, and common nomenclatures are much needed by the research community to optimize automated cell type annotation and facilitate data integration, sharing, and collaboration. In the present study, we developed a novel computational pipeline to utilize the LungMAP CellCards as a dictionary to consolidate single-cell transcriptomic datasets of 104 human lungs and 17 mouse lung samples and constructed "LungMAP CellRef" and "LungMAP CellRef Seed" for both normal human and mouse lungs. "CellRef Seed" has an equivalent prediction power and produces consistent cell annotation as does "CellRef" but improves computational efficiency and simplifies its utilization for fast automated cell type annotation and online visualization. This atlas set incorporates 48 human and 40 mouse well-defined lung cell types catalogued from diverse anatomic locations and developmental time points. Using independent datasets, we demonstrated the utility of our CellRefs for automated cell type annotation analysis of both normal and disease lungs. User-friendly web interfaces were developed to support easy access and maximal utilization of the LungMAP CellRefs. LungMAP CellRefs are freely available to the pulmonary research community through fast interactive web interfaces to facilitate hypothesis generation, research discovery, and identification of cell type alterations in disease conditions.
Significant cardiorespiratory coordination is required to maintain physiological function in health and disease. Sensory neuronal “cross-talk” between the heart and the lungs is required for synchronous regulation of normal cardiopulmonary function and is most likely mediated by the convergence of sensory neural pathways present in the autonomic ganglia. Using neurotracer approaches with appropriate negative control experiments in a mouse model, presence of cardiorespiratory neurons in the vagal (nodose) ganglia are demonstrated. Furthermore, we found that convergent neurons represent nearly 50% of all cardiac neurons and approximately 35% of all respiratory neurons. The current findings demonstrate a pre-existing neuronal substrate linking cardiorespiratory neurotransmission in the vagal ganglia, and a potentially important link for cardiopulmonary cross-sensitization, which may play an important role in the observed manifestations of cardiopulmonary diseases.
The cell bodies of postganglionic sympathetic neurons innervating the heart primarily reside in the stellate ganglion (SG), alongside neurons innervating other organs and tissues. Whether cardiac-innervating stellate ganglionic neurons (SGNs) exhibit diversity and distinction from those innervating other tissues is not known. To identify and resolve the transcriptomic profiles of SGNs innervating the heart we leveraged retrograde tracing techniques using adeno-associated virus (AAV) expressing fluorescent proteins (GFP or Td-tomato) with single cell RNA sequencing. We investigated electrophysiologic, morphologic, and physiologic roles for subsets of cardiac-specific neurons and found that three of five adrenergic SGN subtypes innervate the heart. These three subtypes stratify into two subpopulations; high (NA1a) and low (NA1b and NA1c) Npy-expressing cells, exhibit distinct morphological, neurochemical, and electrophysiologic characteristics. In physiologic studies in transgenic mouse models modulating NPY signaling, we identified differential control of cardiac responses by these two subpopulations to high and low-stress states. These findings provide novel insights into the unique properties of neurons responsible for cardiac sympathetic regulation, with implications for novel strategies to target specific neuronal subtypes for sympathetic blockade in cardiac disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.