Quantum random number generation attracts considerable attention, since its randomness inherently originates in quantum mechanics, but not mathematical assumptions. Randomness certification, e.g. entropy estimation, becomes a key issue in the context of quantum random number generation protocol. We study a self-testing protocol based on dimension witness, with the assumption of independent devices. It addresses the random number extraction problem in a practical prepare-and-measure scenario with uncharacterized devices. However, the lower bound of min-entropy as a function of dimension witness is not tight in existing works. We present a tighter bound of analytic form, by introducing the Lagrangian multiplier method to closely analyze the optimization problem on average guessing probability. Through simulation, it turns out that a significantly higher random number generation rate can be achieved in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.