A BS TRACT: Background: Anecdotal evidence suggests that patients diagnosed with the parkinsonian subtype of multiple system atrophy (MSA-P) may show uptake of the second-generation tau positron emission tomography (PET) tracer 18 F-Florzolotau (previously known as 18 F-APN-1607) in the putamen. Objectives: This study systematically investigated the localization and magnitude of 18 F-Florzolotau uptake in a relatively large cohort of patients with MSA-P. Methods: 18 F-Florzolotau PET imaging was performed in 31 patients with MSA-P, 24 patients with Parkinson's disease (PD), and 20 age-matched healthy controls. 18 F-Florzolotau signal in the striatum was analyzed by visual inspection and classified as either positive or negative. Regional 18 F-Florzolotau binding was also expressed as standardized uptake value ratio (SUVR) to assess whether it was associated with core symptoms of MSA-P after adjustment for potential confounders. Results: By visual inspection and semiquantitative SUVR comparisons, patients with MSA-P showed elevated 18 F-Florzolotau uptake in the putamen, globus pallidus, and dentate-a finding that was not observed in PD. This increased signal was significantly associated with the core symptoms of MSA-P. In addition, patients with MSA-P with cerebellar ataxia showed an elevated 18 F-Florzolotau uptake in the cerebellar dentate. Conclusions: 18 F-Florzolotau tau PET imaging findings may reflect the clinical severity of MSA-P and can potentially discriminate between this condition and PD.
Curcumin is a natural compound extracted from turmeric ( Curcuma longa ), which has been reported to be a promising anti-cancer drug in various human cancers. However, the effects of combination treatment of curcumin with gemcitabine or docetaxel on pancreatic cancer remains elusive. In the present study, the combinatory effects of curcumin with either gemcitabine or docetaxel on the proliferation, apoptosis, migration as well as invasion of PC cells were investigated. Calcusyn software was used to determine whether curcumin has is synergistic with gemcitabine or docetaxel. Combination index values from combinational use were all lower than 1, indicating the synergism of curcumin with gemcitabine or docetaxel on PC cells in vitro . EdU assay showed that curcumin could enhance the ability of gemcitabine or docetaxel to inhibit the proliferation of PC cells. Furthermore, the results from transmission electron microscope, DAPI staining experiments and western blot analysis revealed that curcumin may trigger apoptosis of PC cells via PARP/caspase-3 signaling pathway and reinforced pro-apoptotic ability of either gemcitabine or docetaxel. In addition, curcumin exhibited marked suppressive ability on metastasis of PC cells by wound healing and matrigel-transwell assay. Mechanistically, upregulation of TIMP1/TIMP2 with concomitant downregulation of MMP2/MMP9/N-cadherin proteins may be involved in this process. In conclusion, curcumin showed synergistic anti-cancer effects with either gemcitabine or docetaxel on PC cells.
Monolithic perovskite/organic tandem solar cells (POTSCs) have significant advantages in next‐generation flexible photovoltaics, owing to their capability to overcome the Shockley–Queisser limit and facile device integration. However, the compromised sub‐cells performance challenges the fabrication of high‐efficiency POTSCs. Especially for all‐inorganic wide‐bandgap perovskite front sub‐cells (AIWPSCs) based n‐i‐p structured POTSCs (AIPOTSCs), for which the power conversion efficiency (PCE) is much lower than organic–inorganic mixed‐halide wide‐bandgap perovskite based POTSCs. Herein, an ionic liquid, methylammonium formate (MAFm), based dual‐interface engineering approach is developed to modify the bottom and top interfaces of wide‐bandgap CsPbI2Br films. In particular, the Fm− group of MAFm can effectively passivate the interface defects, and the top interface modification can facilitate the formation of uniform perovskite films with enlarged grain size, thereby mitigating the defects and perovskite grain boundaries induced carrier recombination. As a result, CsPbI2Br‐based AIWPSCs with a high PCE of 17.0% and open‐circuit voltage (VOC) of 1.347 V are achieved. By integrating these dual‐interface engineered CsPbI2Br‐based front sub‐cells with the narrow‐bandgap PM6:CH1007‐based rear sub‐cells, a record PCE of 23.21% is obtained for AIPOTSCs, illustrating the potential of AIPOTSCs for achieving high‐efficiency tandem solar cells.
Background Previous studies with a limited sample size suggested more severe dopaminergic transporter (DAT) lesions in the striatum of progressive supranuclear palsy (PSP) than those in Parkinson's disease (PD) and multiple system atrophy–parkinsonism (MSA‐P). However, few studies had taken various subtypes of PSP into consideration, making the reanalysis of DAT imaging in larger PSP cohort with various subtypes in need. Objectives To compare the dopaminergic lesion patterns of PSP with MSA‐P and PD, and to explore the specific striatal subregional patterns of different PSP subtypes. Methods 11C‐CFT positron emission tomography (PET) imaging was conducted in 83 PSP patients consisting of different subtypes, 61 patients with PD, 41 patients with MSA‐P, and 43 healthy volunteers. Demographic and clinical data were compared by the chi‐squared test or one‐way analysis of variance. A generalized linear model was used to examine intergroup differences in tracer uptake values after adjusting for age, disease duration, and disease severity. Areas under the receiver operating characteristic curve were calculated to assess the diagnostic accuracy of subregional DAT binding patterns. Results The patients with PSP presented more severe DAT loss in the striatum than in PD and MSA‐P, especially in caudate. In PSP, the subregional lesion was still more severe in putamen than in caudate, similar to that in PD and MSA‐P. Among detailed subtypes, no significant difference was detected. Conclusion The dopaminergic lesions were more severe in PSP, and no difference was detected among subtypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.