With newly developed computational approaches, we design a nanocomposite that enables self-regeneration of the gel matrix when a significant portion of the material is severed. The cut instigates the dynamic cascade of cooperative events leading to the regrowth. Specifically, functionalized nanorods localize at the new interface and initiate atom transfer radical polymerization with monomers and cross-linkers in the outer solution. The reaction propagates to form a new cross-linked gel, which can be tuned to resemble the uncut material.
The dependence of magnetization on the applied magnetic field and temperature was measured carefully near their Curie temperatures for two perovskite manganite samples: La0.67Ca0.33MnOδ and La0.60Y0.07Ca0.33MnOδ. It is suggested by the results that these materials can be utilized as both the thermal storage (passive regeneration) and as the working material (active regeneration) in an active magnetic regenerative refrigerator with very large temperature span, for their significant entropy change upon the application of a magnetic field and the easily tuned Curie temperatures.
The thermostats in molecular dynamics (MD) simulations of highly confined channel flow may have significant influences on the fidelity of transport phenomena. In this study, we exploit non-equilibrium MD simulations to generate Couette flows with different combinations of thermostat algorithms and strategies. We provide a comprehensive analysis on the effectiveness of three thermostat algorithms Nosé-Hoover chain (NHC), Langevin (LGV) and dissipative particle dynamics (DPD) when applied in three thermostat strategies, thermostating either walls (TW) or fluid (TF), and thermostating both the wall and fluid (TWTF). Our results of thermal and mechanical properties show that the TW strategy more closely resembles experimental conditions. The TF and TWTF systems also produce considerably similar behaviors in weakly sheared systems, but deviate the dynamics in strongly sheared systems due to the isothermal condition. The LGV and DPD thermostats used in the TF and TWTF systems provide vital ways to yield correct dynamics in coarse-grained systems by tuning the fluid transport coefficients. Using conventional NHC thermostat to thermostat fluid only produces correct thermal behaviors in weakly sheared systems, and breaks down due to significant thermal inhomogeneity in strongly sheared systems.
In this paper, nanoscale wetting on groove-patterned surfaces is thoroughly studied using molecular dynamics simulations. The results are compared with Wenzel's and Cassie's predictions to determine whether these continuum theories are still valid at the nanoscale for both hydrophobic and hydrophilic types of surfaces when the droplet size is comparable to the groove size. A system with a liquid mercury droplet and grooved copper substrate is simulated. The wetting properties are determined by measuring contact angles of the liquid droplet at equilibrium states. Correlations are established between the contact angle, roughness factor r, and surface fraction f. The results show that, for hydrophobic surfaces, the contact angle as a function of roughness factor and surface fraction on nanogrooved surfaces obeys the predictions from Wenzel's theory for wetted contacts and Cassie's theory for composite contacts. However, slight deviations occur in composite contacts when a small amount of liquid penetration is observed. The contact angle of this partial wetting cannot be accurately predicted using either Cassie's or Wenzel's theories. For hydrophilic surfaces, only wetted contacts are observed. In most cases, the resulting contact angles are found to be higher than Wenzel's predictions. At the nanoscale, high surface edge density plays an important role, which results in contact line pinning near plateau edges. For both hydrophobic and hydrophilic surfaces, substantial amount of anistropic spreading is found in the direction that is parallel to the grooves, especially at wetted or partially wetted contacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.