Receptor protein tyrosine kinases (RPTKs) play important roles in the regulation of a variety of cellular processes including cell migration, proliferation, and protection from apoptosis. Here, we report the identification and characterization of a novel RPTK-like molecule that has a critical role in induction of tumorigenesis and metastasis and is termed Novel Oncogene with Kinase-domain (NOK). NOK contains a putative single transmembrane domain and a conserved intracellular tyrosine kinase domain that shares homology with members of the platelet-derived growth factor/fibroblast growth factor receptor superfamily. NOK was exclusively located in the cytoplasm. NOK mRNAs were detected in limited human organs and expressed with the highest abundance in the prostate. A variety of tumor cells also expressed the NOK mRNAs. We demonstrated that NIH3T3 and BaF3 cells could be strongly transformed by the expression of the NOK gene as examined by colony formation experiment. In addition, BaF3 cells with the stable expression of NOK induced rapid tumorigenesis in nude mice. Interestingly, these NOKexpressing tumor cells could promptly invade and spread into various distinct organs and form metastatic foci, eventually leading to the rapid death of these animals. Moreover, molecular mechanism studies indicated that NOK could concomitantly activate both MAP kinase and phosphatidylinositol 3-kinases (PI3K) pathways in stable BaF3 cells. Thus, our results both in vitro and in vivo suggest that NOK is a novel oncogene with the capacity of promoting cell transformation, tumorigenesis, and metastasis.
Purpose To investigate the impact of radioembolization with yttrium-90 resin microspheres on the regulation of angiogenesis through observation of serial changes in a spectrum of angiogenic markers and other cytokines after therapy. Materials and Methods This prospective pilot study enrolled 22 patients with liver-dominant disease deriving from biopsy-proven hepatocellular carcinoma (HCC) (n = 7) or metastatic colorectal carcinoma (mCRC) (n = 15). Circulating angiogenic markers were measured from serum samples drawn at baseline and at time points after therapy ranging from 6 hours to 120 days. Using multiplex enzyme-linked immunosorbent assay, several classic angiogenesis factors (vascular endothelial growth factor [VEGF], angiopoietin-2 [Ang-2], basic fibroblast growth factor [bFGF], platelet-derived growth factor subunit BB [PDGF-BB], thrombospondin-1 [Tsp-1]) and nonclassic factors (follistatin, leptin, interleukin [IL]-8) were evaluated. Results Increases in cytokine levels ≥ 50% over baseline were observed in more than half of all patients studied for many cytokines, including classic angiogenic factors such as VEGF, Ang-2, and Tsp-1 as well as nonclassic factors IL-8 and follistatin (range, 36% – 82% for all cytokines). Baseline cytokine levels in patients with overall survival (OS) ≤ 6 months differed significantly from patients with longer survival for Ang-2 (P = .033) and IL-8 (P = .041). Patients with OS ≤ 6 months exhibited transient increases in VEGF and PDGF-BB after therapy compared with patients with OS > 6 months. Conclusions Radioembolization is associated with early transient increases in many angiogenic cytokines. In this small sample size, some of these changes were associated with worse OS. This research has important implications for future studies of radioembolization with antiangiogenic therapy performed during and after the procedure.
Human gastric cancer is one of the most common malignant tumors with a poor prognosis. Cisplatin (CDDP) is a well-known first-line chemotherapeutic drug. Acquired resistance retards the clinical application of CDDP in gastric cancer. In this study, circular RNA circ_0026359 was demonstrated to be overexpressed in gastric cancer tissues/cells compared with normal gastric tissues/cells and was overexpressed in CDDP-resistant gastric cancer tissues/cells compared with CDDP-sensitive gastric cancer tissues/cells. High levels of circ_0026359 were associated with low overall survival (OS) and relapse-free survival (RFS) rates in gastric cancer patients. circ_0026359 was examined to promote CDDP resistance in gastric cancer cells. circ_0026359 directly interacted and negatively regulated miR-1200. POLD4 was a direct target of miR-1200. miR-1200/POLD4 pathway mediated the promoting role of circ_0026359 in CDDP resistance of gastric cancer. circ_0026359 could be used as a potential target for CDDP-resistant gastric cancer therapy.
Objective: To study the role of long non-coding RNA (lncRNA) CRYM-AS1 in human gastric cancer. Methods: Expression levels of CRYM-AS1 in cell lines and clinical tissues were examined by RT-qPCR. The association between CRYM-AS1 levels and clinicopathological parameters / survival rates of gastric cancer patients was analyzed.Cell functional experiments including MTT assay, glucose consumption / lactate production / ATP production detection were performed to examine the role of CRYM-AS1 in cell aerobic glycolysis and cell proliferation of gastric cancer cells. Subcellular fractionation location detection, western blot, RIP (RNA binding protein immunoprecipitation) assay, CHIP (Chromatin immunoprecipitation) assay and BSP (Bisulfite sequencing PCR) assay were carried out to explore the molecular mechanism of CRYM-AS1 in gastric cancer cells.Results: CRYM-AS1 was low expressed in gastric cancer cells and tissues compared with normal gastric cells and tissues respectively. CRYM-AS1 was negatively correlated with TNM staging, tumor size and overall survival (OS) rate in gastric cancer patients. CRYM-AS1 inhibited gastric cancer cell aerobic glycolysis and cell proliferation. CRYM-AS1 directly bound to EZH2 and mediated the CRYM promoter methylation and consequently negatively regulated the expression of CRYM. Forced expression of CRYM rescued the decreased aerobic glycolysis and cell proliferation induced by CRYM-AS1 in gastric cancer cells.Conclusion: CRYM-AS1 was an important biomarker and could be used for human gastric cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.