To alleviate the limitations of pure sulfide Cu2ZnSnS4 (CZTS) thin film, such as band gaps adjustment, antisite defects, secondary phase and microstructure, Cadmium is introduced into CZTS thin film to replace Zn partially to form Cu2Zn1−xCdxSnS4 (CZCTS) thin film by low‐cost sol–gel method. It is demonstrated that the band gaps and crystal structure of CZCTS thin films are affected by the change in Zn/Cd ratio. In addition, the ZnS secondary phase can be decreased and the grain sizes can be improved to some degree by partial replacement of Zn with Cd in CZCTS thin film. The power conversion efficiency of CZTS solar cell device is enhanced significantly from 5.30% to 9.24% (active area efficiency 9.82%) with appropriate ratio of Zn/Cd. The variation of device parameter as a function of Zn/Cd ratio may be attributed to the change in electronic structure of the bulk CZCTS thin film (i.e., phase change from kesterite to stannite), which in turn affects the band alignment at the CZCTS/buffer interface and the charge separation at this interface.
Zinc sulfide (ZnS) thin films have been synthesized by spray pyrolysis at 310 °C using an aqueous solution of zinc chloride (ZnCl2) and thioacetamide (TAA). Highly crystalline films were obtained by applying TAA instead of thiourea (TU) as the sulfur source. X-ray diffraction (XRD) analyses show that the films prepared by TAA contained a wurtzite structure, which is usually a high temperature phase of ZnS. The crystallinity and morphology of the ZnS films appeared to have a strong dependence on the spray rate as well. The asymmetric polar structure of the TAA molecule is proposed to be the intrinsic reason of the formation of highly crystalline ZnS at comparatively low temperatures. The violet and green emissions from photoluminescence (PL) spectroscopy reflected the sulfur and zinc vacancies in the film. Accordingly, the photodetectors fabricated using these films exhibit excellent response to green and red photons of 525 nm and 650 nm respectively, though the band gaps of the materials, estimated from optical absorption spectroscopy, are in the range of 3.5-3.6 eV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.