While solid-state batteries are tantalizing for achieving improved safety and higher energy density, solid ion conductors currently available fail to satisfy the rigorous requirements for battery electrolytes and electrodes. Inorganic ion conductors allow fast ion transport, but their rigid and brittle nature prevents good interfacial contact and impedes device integration and stability.Conversely, flexible polymeric ion conductors provide better interfacial compatibility and mechanical tolerance, but suffer from inferior ionic conductivity (< 10 −5 S cm −1 at room temperature) due to the coupling of ion transport with the polymer chain motion 1-3 . In this work, we report a general design strategy for achieving one-dimensional (1D), high-performance polymer solid-state ion conductors through molecular channel engineering, which we demonstrate via Cu 2+ -coordination of cellulose nanofibrils. The cellulose nanofibrils by themselves are not ionic conductive; however, by opening the molecular channels between the cellulose chains through Cu 2+ coordination we are able to achieve a Li-ion conductivity as high as 1.5×10 −3 S cm −1 at room temperature-a record among all known polymer ion conductors. This improved conductivity is enabled by a unique Li + hopping mechanism that is decoupled from the polymer segmental motion. Also benefitted from such decoupling, the cellulose-based ion conductor demonstrates multiple advantages, including a high transference number (0.78 vs. 0.2-0.5 in other polymers 2 ), low activation energy (0.19 eV), and a wide electrochemical stability window (4.5 V) that accommodate both Li metal anode and high-voltage cathodes. Furthermore, we demonstrate this 1D ion conductor not only as a thin, high-conductivity solid-state electrolyte but also as an effective ion-conducting additive for the solid cathode, providing continuous ion transport pathways with a low percolation threshold, which allowed us to utilize the thickest LiFePO4 solidstate cathode ever reported for high energy density. This approach has been validated with other 3 polymers and cations (e.g., Na + and Zn 2+ ) with record-high conductivities, offering a universal strategy for fast single-ion transport in polymer matrices, with significance that could go far beyond safe, high-performance solid-state batteries.
The construction of two-dimensional (2D) layered compounds for nanofluidic ion transport has recently attracted increasing interest due to the facile fabrication, tunable channel size, and high flux of these materials. Here we design a nacre-mimetic graphite-based nanofluidic structure in which the nanometer-thick graphite flakes are wrapped by negatively charged nanofibrillated cellulose (NFC) fibers to form multiple 2D confined spacings as nanochannels for rapid cation transport. At the same time, the graphite−NFC structure exhibits an ultralow electrical conductivity (σ e ≤ 10 −9 S/cm), even when the graphite concentration is up to 50 wt %, well above the percolation threshold (∼1 wt %). By tuning the hydration degree of graphite−NFC composites, the surface-charge-governed ion transport in the confined ∼1 nm spacings exhibits nearly 12 times higher ionic conductivity (1 × 10 −3 S/cm) than that of a fully swollen structure (∼1.5 nm, 8.5 × 10 −5 S/cm) at salt concentrations up to 0.1 M. The resulting charge selective conductor shows intriguing features of both high ionic conductivity and low electrical conductivity. Moreover, the inherent stability of the graphite and NFC components contributes to the strong functionality of the nanofluidic ion conductors in both acidic and basic environments. Our work demonstrates this 1D−2D material hybrid system as a suitable platform to study nanofluidic ion transport and provides a promising strategy to decouple ionic and electronic pathways, which is attractive for applications in new nanofluidic device designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.