Hydrothermal alteration minerals are an effective prospecting indicator. Advanced spaceborne thermal emission and reflection radiometer (ASTER) satellite data are some of the most commonly adopted multispectral data for the mapping of hydrothermal alteration minerals. Compared to multispectral data, hyperspectral data have stronger ground object recognition ability. Chinese Gaofen-5 (GF-5) is the first hyperspectral satellite independently developed by China that has the advantages of both wide-width and high-spectral-resolution technology. However, the mapping ability of GF5 data for hydrothermal alteration minerals requires further study. In this study, ASTER and GF-5 satellite data were implemented to map hydrothermal alteration minerals in the Longtoushan Pb-Zn deposit, SW China. Selective principal component analysis (SPCA) technology was employed to map iron oxide/hydroxides, argillic, quartz, and carbonate minerals at the pixel level using ASTER data, and the mixture tuned matched filtering (MTMF) method was implemented for the extracted hematite, kaolinite, calcite, and dolomite at the sub-pixel level using GF-5 data. When mapping the hydrothermal alteration minerals, the distribution features of the hydrothermal alteration minerals from the Longtoushan Pb-Zn deposit were systematically revealed. A comprehensive field investigation and petrographic study were conducted to verify the extraction accuracy of the hydrothermal alteration minerals. The results showed that the overall accuracies for the ASTER and GF-5 data were 82.6 and 92.9 and that the kappa coefficients were 0.78 and 0.90, respectively. This indicates that the GF-5 data are able to map hydrothermal alteration minerals well and that they can be promoted as a hyperspectral data source for mapping systematic hydrothermal alteration minerals in the future.
The Pulang porphyry copper deposit (PCD), one of the main potential areas for copper resource exploration in China, exhibits typical porphyry alteration zoning. However, further investigation of the indicative significance of alteration minerals, additional insight into metallogenic characteristics, and prospecting guidelines continue to be challenging. In this study, ASTER and WorldView-3 data were used to map hydrothermal alteration minerals by employing band ratios, principal component analysis, and spectrum-area techniques; and subsequently, the indication significance of alteration minerals was studied in-depth. The following new insights into the metallogenic structure and spatial distribution of alteration zoning in Pulang PCD were obtained and verified. (1) A new NE trending normal fault, passing through the northeast of Pulang PCD, was discovered. (2) Two mineralization alteration centers, exhibiting alteration zoning characteristics of potassic-silicified, phyllic, and propylitic zones from the inside to the outside, were observed on both sides of the fault. (3) At the junction of the redivided potassic-silicification and phyllic zones, favorable prospecting potential areas were delineated. This study shows that the spectral/multi-sensor satellite data are valuable and cost-effective tools for the preliminary stages of porphyry copper exploration in inaccessible and remote areas around the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.