Germanium is a promising material for mid-infrared (MIR) integrated photonics due to its CMOS compatibility and wide transparency window covering the fingerprint spectral region (2-15 μm). However, due to the limited quality and structural configurations of conventional germanium-based integration platforms, the realization of high-Q on-chip germanium resonators in the MIR spectral range remains challenging to date. Here we experimentally demonstrate an air-cladding MIR germanium microring resonator with, to the best of our knowledge, the highest loaded Q-factor of ∼57,000 across all germanium-based integration platforms to date. A propagation loss of 5.4 dB/cm and a high extinction ratio of 22 dB approaching the critical coupling condition are experimentally realized. These are enabled by our smart-cut methods for developing high-quality germanium-on-insulator wafers and by implementing our suspended-membrane structure. Our high-Q germanium microring resonator is a promising step towards a number of on-chip applications in the MIR spectral range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.