With the increasing development of smart grid, multi-party cooperative computation between several entities has become a typical characteristic of modern energy systems. Traditionally, data exchange among parties is inevitable, rendering how to complete multiparty collaborative optimization without exposing any private information a critical issue. This paper proposes a fully privacy-preserving distributed optimization framework based on secure multi-party computation (SMPC) with secret sharing protocols. The framework decomposes the collaborative optimization problem into a master problem and several subproblems. The process of solving the master problem is executed in the SMPC framework via the secret sharing protocols among agents. The relationships of agents are completely equal, and there is no privileged agent or any third party. The process of solving subproblems is conducted by agents individually. Compared to the traditional distributed optimization framework, the proposed SMPC-based framework can fully preserve individual private information. Exchanged data among agents are encrypted and no private information disclosure is assured. Furthermore, the framework maintains a limited and acceptable increase in computational costs while guaranteeing optimality. Case studies are conducted on test systems of different scales to demonstrate the principle of secret sharing and verify the feasibility and scalability of the proposed methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.