JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
In this announcement we present a general and new approach to analyzing the asymptotics of oscillatory Riemann-Hilbert problems. Such problems arise, in particular, in evaluating the long-time behavior of nonlinear wave equations solvable by the inverse scattering method. We will restrict ourselves here exclusively to the modified Korteweg de Vries (MKdV) equation,but it will be clear immediately to the reader with some experience in the field, that the method extends naturally and easily to the general class of wave equations solvable by the inverse scattering method, such as the KdV, nonlinear Schrödinger (NLS), and Boussinesq equations, etc., and also to "integrable" ordinary differential equations such as the Painlevé transcendents.
We calculate the leading-order term of the solution of the focusing nonlinear (cubic) Schrödinger equation (NLS) in the semiclassical limit for a certain oneparameter family of initial conditions. This family contains both solitons and pure radiation. In the pure radiation case, our result is valid for all times t ≥ 0. We utilize the Riemann-Hilbert problem formulation of the inverse scattering problem to obtain the leading-order term of the solution. Error estimates are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.