Fabrication of nanofibrous scaffolds with well-defined architecture mimicking native extracellular matrix analog has significant potentials for many specific tissue engineering and organs regeneration applications. The fabrication of aligned collagen nanofibrous scaffolds by electrospinning was described in this study. The structure and in vitro properties of these scaffolds were compared with a random collagen scaffold. All the collagen scaffolds were first crosslinked in glutaraldehyde vapor to enhance the biostability and keep the initial nano-scale dimension intact. From in vitro culture of rabbit conjunctiva fibroblast, the aligned scaffold exhibited lower cell adhesion but higher cell proliferation because of the aligned orientation of fibers when compared with the random scaffold. And the alignment of the fibers may control cell orientation and strengthen the interaction between the cell body and the fibers in the longitudinal direction of the fibers.
The development of blended collagen and glycosaminoglycan (GAG) scaffolds can potentially be used in many soft tissue engineering applications since the scaffolds mimic the structure and biological function of native extracellular matrix (ECM). In this study, we were able to obtain novel nanofibrous collagen-GAG scaffolds by electrospinning collagen blended with chondroitin sulfate (CS), a widely used GAG, in a mixed solvent of trifluoroethanol and water. The electrospun collagen-GAG scaffold with 4% CS (COLL-CS-04) exhibited a uniform fiber structure with nanoscale diameters. A second collagen-GAG scaffold with 10% CS consisted of smaller diameter fibers but exhibited a broader diameter distribution due to the different solution properties in comparison with COLL-CS-04. After cross-linking with glutaraldehyde vapor, the collagen-GAG scaffolds became more biostable and were resistant to collagenase degradation. This is evidently a more favorable environment allowing increased proliferation of rabbit conjunctiva fibroblast on the scaffolds. Incorporation of CS into collagen nanofibers without cross-linking did not increase the biostability but still promoted cell growth. The potential of applying the nanoscale collagen-GAG scaffold in tissue engineering is significant since the nanodimension fibers made of natural ECM mimic closely the native ECM found in the human body. The high surface area characteristic of this scaffold may maximize cell-ECM interaction and promote tissue regeneration faster than other conventional scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.