While it is well-known that housing prices generally increased in the United States (U.S.) during the COVID-19 pandemic crisis, to the best of our knowledge, there has been no research conducted to understand the spatial patterns and heterogeneity of housing price changes in the U.S. real estate market during the crisis. There has been less attention on the consequences of this pandemic, in terms of the spatial distribution of housing price changes in the U.S. The objective of this study was to explore the spatial patterns and heterogeneous distribution of housing price change rates across different areas of the U.S. real estate market during the COVID-19 pandemic. We calculated the global Moran’s I, Anselin’s local Moran’s I, and Getis-Ord’s Gi∗ statistics of the housing price change rates in 2856 U.S. counties. The following two major findings were obtained: (1) The influence of the COVID-19 pandemic crisis on housing price change varied across space in the U.S. The patterns not only differed from metropolitan areas to rural areas, but also varied from one metropolitan area to another. (2) It seems that COVID-19 made Americans more cautious about buying property in densely populated urban downtowns that had higher levels of virus infection; therefore, it was found that during the COVID-19 pandemic year of 2020–2021, the housing price hot spots were typically located in more affordable suburbs, smaller cities, and areas away from high-cost, high-density urban downtowns. This study may be helpful for understanding the relationship between the COVID-19 pandemic and the real estate market, as well as human behaviors in response to the pandemic.
We are currently living in the era of big data. The volume of collected or archived geospatial data for land use and land cover (LULC) mapping including remotely sensed satellite imagery and auxiliary geospatial datasets is increasing. Innovative machine learning, deep learning algorithms, and cutting-edge cloud computing have also recently been developed. While new opportunities are provided by these geospatial big data and advanced computer technologies for LULC mapping, challenges also emerge for LULC mapping from using these geospatial big data. This article summarizes the review studies and research progress in remote sensing, machine learning, deep learning, and geospatial big data for LULC mapping since 2015. We identified the opportunities, challenges, and future directions of using geospatial big data for LULC mapping. More research needs to be performed for improved LULC mapping at large scales.
COVID-19 has affected almost all sectors of the economy, including the real estate markets across different countries in the world. A rich body of literature has emerged in analyzing real estate market trends and revealing important information. However, few studies have used a spatial perspective to investigate the impact of COVID-19 on property values. The main purposes of this study are as follows: (1) to explore the spatial distribution and spatial patterns of housing price changes during the COVID-19 pandemic crisis in the U.S. real estate market and (2) to model the spatially nonstationary relationships between the housing price change and COVID-19 characteristics. We find that housing price changes differ across space and appear associated with the spatial distribution of the COVID-19 case rates. The housing market volatility is amplified by the uneven distribution of some socioeconomic factors. The spatially uneven housing price changes may bring an uneven spillover effect to the rest of the economy and lead to divergence in economic growth across different areas.
The SARAL-AltiKa dataset was evaluated for refined offshore wind energy resources assessment and potential metocean monitoring capability in the Southern New England region. Surface wind speed and Significant Wave Height (Hs) products were assessed with corresponding variables from buoy observations for 2014–2019. To increase the sample size, this study analyzed and applied an approach to collect data around the reference buoys beyond the satellite footprint at the expense of a bias increment. The study corroborated the accuracy of the SARAL-AltiKa measurements for the offshore area of interest and added details for stations closer to the coast compared with past studies. A proportional bias with underestimation of high values of Hs was found in coastal sites. Wind speed estimates on the other hand appear to be less sensitive to the closeness to the coast. The empirical relationship between wind strength and Hs in the buoy observations is reproduced to a large extent by the AltiKa measurements in locations where land contamination is minimal. The histograms of surface wind and Hs are well described by the Weibull distribution and the shape and scale parameters closely resemble those of the histograms of the collocated in situ observations. We use these results to extrapolate the winds to a target domain with no in situ observations for wind energy resource estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.