PLA2G7 gene product is a secreted enzyme whose activity is associated with coronary heart disease (CHD). The goal of our study is to investigate the contribution of PLA2G7 promoter DNA methylation to the risk of CHD. Using the bisulphite pyrosequencing technology, PLA2G7 methylation was measured among 36 CHD cases and 36 well-matched controls. Our results indicated that there was a significant association between PLA2G7 methylation and CHD (adjusted P = 0.025). Significant gender-specific correlation was observed between age and PLA2G7 methylation (males: adjusted r = −0.365, adjusted P = 0.037; females: adjusted r = 0.373, adjusted P = 0.035). A breakdown analysis by gender showed that PLA2G7 methylation was significantly associated with CHD in females (adjusted P = 0.003) but not in males. A further two-way ANOVA analysis showed there was a significant interaction between gender and status of CHD for PLA2G7 methylation (gender*CHD: P = 6.04E−7). Moreover, PLA2G7 methylation is associated with the levels of total cholesterols (TC, r = 0.462, P = 0.009), triglyceride (TG, r = 0.414, P = 0.02) and Apolipoprotein B (ApoB, r = 0.396, P = 0.028) in females but not in males (adjusted P>0.4). Receiver operating characteristic (ROC) curves showed that PLA2G7 methylation could predict the risk of CHD in females (area under curve (AUC) = 0.912, P = 2.40E−5). Our results suggest that PLA2G7 methylation changes with aging in a gender-specific pattern. The correlation between PLA2G7 methylation and CHD risk in females is independent of other parameters including age, smoking, diabetes and hypertension. PLA2G7 methylation might exert its effects on the risk of CHD by regulating the levels of TC, TG, and ApoB in females. The gender disparities in the PLA2G7 methylation may play a role in the molecular mechanisms underlying the pathophysiology of CHD.
BackgroundEpithelial-mesenchymal transition (EMT) has been believed to be related with chemotherapy resistance in non-small cell lung cancer (NSCLC). Recent studies have suggested eIF5A-2 may function as a proliferation-related oncogene in tumorigenic processes.MethodsWe used cell viability assays, western blotting, immunofluorescence, transwell-matrigel invasion assay, wound-healing assay combined with GC7 (a novel eIF5A-2 inhibitor) treatment or siRNA interference to investigate the role of eIF5A-2 playing in NSCLC chemotherapy.ResultsWe found low concentrations of GC7 have little effect on NSCLC viability, but could enhance cisplatin cytotoxicity in NSCLC cells. GC7 also could reverse mesenchymal phenotype in NCI-H1299 and prevented A549 cells undergoing EMT after TGF-β1 inducement. eIF5A-2 knockdown resulted in EMT inhibition.ConclusionOur data indicated GC7 enhances cisplatin cytotoxicity and prevents the EMT in NSCLC cells by inhibiting eIF5A-2.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2466-14-174) contains supplementary material, which is available to authorized users.
Objectives. Glucokinase encoded by GCK is a key enzyme that facilitates phosphorylation of glucose to glucose-6-phosphate. Variants of GCK gene were shown to be associated with type 2 diabetes (T2D) and coronary heart disease (CHD). The goal of this study was to investigate the contribution of GCK gene-body methylation to the risk of CHD. Design and Methods. 36 patients (18 males and 18 females) and 36 age- and sex-matched controls were collected for the current methylation research. DNA methylation level of the CpG island (CGI) region on the GCK gene-body was measured through the sodium bisulfite DNA conversion and pyrosequencing technology. Results. Our results indicated that CHD cases have a much lower methylation level (49.77 ± 6.43%) compared with controls (54.47 ± 7.65%, P = 0.018). In addition, GCK gene-body methylation was found to be positively associated with aging in controls (r = 0.443, P = 0.010). Conclusions. Our study indicated that the hypomethylation of GCK gene-body was significantly associated with the risk of CHD. Aging correlates with an elevation of GCK methylation in healthy controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.