Mg alkaline-promoted Ni ordered mesoporous catalysts possess enhanced catalytic activities and stabilities toward CO2 methanation due to decreasing CO2 activation energy.
In the past two decades, great progress has been made in the aspects of fabrication and application of ordered mesoporous metal oxides. Ordered mesoporous metal oxides have attracted more and more attention due to their large surface areas and pore volumes, unblocked pore structure, and good thermal stabilities. Compared with non-porous metal oxides, the most prominent feature is their ability to interact with molecules not only on their outer surface but also on the large internal surfaces of the material, providing more accessible active sites for the reactants. This review carefully describes the characteristics, classification and synthesis of ordered mesoporous metal oxides in detail. Besides, it also summarizes the catalytic application of ordered mesoporous metal oxides in the field of carbon dioxide conversion and resource utilization, which provides prospective viewpoints to reduce the emission of greenhouse gas and the inhibition of global warming. Although the scope of current review is mainly limited to the ordered mesoporous metal oxides and their application in the field of CO2 catalytic conversion via heterogeneous catalysis processes, we believe that it will provide new insights and viewpoints to the further development of heterogeneous catalytic materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.