ObjectivesLung cancer in Xuanwei (LCXW), China, is known throughout the world for its distinctive characteristics, but little is known about its pathogenesis. The purpose of this study was to screen potential novel “driver genes” in LCXW.MethodsGenome-wide DNA copy number alterations (CNAs) were detected by array-based comparative genomic hybridization and differentially expressed genes (DEGs) by gene expression microarrays in 8 paired LCXW and non-cancerous lung tissues. Candidate driver genes were screened by integrated analysis of CNAs and DEGs. The candidate genes were further validated by real-time quantitative polymerase chain reaction.ResultsLarge numbers of CNAs and DEGs were detected, respectively. Some of the most frequently occurring CNAs included gains at 5p15.33-p15.32, 5p15.1-p14.3, and 5p14.3-p14.2 and losses at 11q24.3, 21q21.1, 21q22.12-q22.13, and 21q22.2. Integrated analysis of CNAs and DEGs identified 24 candidate genes with frequent copy number gains and concordant upregulation, which were considered potential oncogenes, including CREB3L4, TRIP13, and CCNE2. In addition, the analysis identified 19 candidate genes with a negative association between copy number change and expression change, considered potential tumor suppressor genes, including AHRR, NKD2, and KLF10. One of the most studied oncogenes, MYC, may not play a carcinogenic role in LCXW.ConclusionsThis integrated analysis of CNAs and DEGs identified several potential novel LCXW-related genes, laying an important foundation for further research on the pathogenesis of LCXW and identification of novel biomarkers or therapeutic targets.
Background Patient-based real-time quality control (PBRTQC) has gained increasing attention in the field of clinical laboratory management in recent years. Despite the many upsides that PBRTQC brings to the laboratory management system, it has been questioned for its performance and practical applicability for some analytes. This study introduces an extended method, regression-adjusted real-time quality control (RARTQC), to improve the performance of real-time quality control protocols. Methods In contrast to the PBRTQC, RARTQC has an additional regression adjustment step before using a common statistical process control algorithm, such as the moving average, to decide whether an analytical error exists. We used all patient test results of 4 analytes in 2019 from Zhongshan Hospital, Fudan University, to compare the performance of the 2 frameworks. Three types of analytical error were added in the study to compare the performance of PBRTQC and RARTQC protocols: constant, random, and proportional errors. The false alarm rate and error detection charts were used to assess the protocols. Results The study showed that RARTQC outperformed PBRTQC. RARTQC, compared with the PBRTQC, improved the trimmed average number of patients affected before detection (tANPed) at total allowable error by about 50% for both constant and proportional errors. Conclusions The regression step in the RARTQC framework removes autocorrelation in the test results, allows researchers to add additional variables, and improves data transformation. RARTQC is a powerful framework for real-time quality control research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.