International audiencen-Type polycrystalline SnSe with Ti, Pb co-doping was synthesized by combining mechanical alloying (MA) with spark plasma sintering (SPS). It is revealed that Ti is an effective cationic dopant to convert SnSe from a p-type to an n-type semiconductor, and the thermoelectric performance of the Ti-doped SnSe is also improved in comparison with the pristine sample due to an enhanced power factor. Furthermore, after further Pb doping, an obviously improved electrical conductivity together with a moderate Seebeck coefficient can be achieved, which results in an improvement of the power factor with a maximum value of 300 mu W m(-1) K-2 at 773 K. Meanwhile, the lattice thermal conductivity is significantly reduced because of the enhanced phonon scattering owing to the mass and strain fluctuations. Therefore, a final ZT value of 0.4 was obtained for composition of Sn0.74Pb0.20Ti0.06Se at 773 K, which is a conservative value for n-type SnSe with cationic dopant prepared by the simple preparation process of MA and SPS
Since diverse ostracod faunas in the immediate aftermath of the latest Permian mass extinction are mainly found within Permian–Triassic boundary microbialites (PTBMs), the idea of an ostracod ‘microbial‐related refuge’ has been proposed. Here, we report a diversified earliest Triassic ostracod fauna from the Yangou section in South China, where no PTBMs were deposited, providing evidence inconsistent with this ‘microbial‐related refuge’ hypothesis. In addition, a significant ostracod extinction is recorded, corresponding with the earliest Triassic mass extinction (ETME). This ETME of ostracods is associated with size increases and a length/height ratio (L/H) decrease, indicating varied evolutionary patterns of shape and size of ostracods through the Permian–Triassic (P‐Tr) extinction events. Although the nature of these biotic changes is somewhat unclear, the temporally varied ‘refuge zone’ scenario provides us with a window to reconstruct the environmental dynamics of ecosystem changes during the P‐Tr transition.
An increasing number of unexpectedly diverse benthic communities are being reported from microbially precipitated carbonate facies in shallow-marine platform settings after the end-Permian mass extinction. Ostracoda, which was one of the most diverse and abundant metazoan groups during this interval, recorded its greatest diversity and abundance associated with these facies. Previous studies, however, focused mainly on taxonomic diversity and, therefore, left room for discussion of paleoecological significance. Here, we apply a morphometric method (semilandmarks) to investigate morphological variance through time to better understand the ecological consequences of the end-Permian mass extinction and to examine the hypothesis that microbial mats played a key role in ostracod survival. Our results show that taxonomic diversity and morphological disparity were decoupled during the end-Permian extinction and that morphological disparity declined rapidly at the onset of the end-Permian extinction, even though the high diversity of ostracods initially survived in some places. The decoupled changes in taxonomic diversity and morphological disparity suggest that the latter is a more robust proxy for understanding the ecological impact of the extinction event, and the low morphological disparity of ostracod faunas is a consequence of sustained environmental stress or a delayed post-Permian radiation. Furthermore, the similar morphological disparity of ostracods between microbialite and non-microbialite facies indicates that microbial mats most likely represent a taphonomic window rather than a biological refuge during the end-Permian extinction interval.
diverse gastropod fauna from the shallow marine carbonate platform of the Yangou section (south China) in the immediate aftermath of the Permian-Triassic mass extinction. Geological
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.