Accurate semantic editing of the generated images is extremely important for machine learning and sample enhancement of big data. Aiming at the problem of semantic entanglement in generated image latent space of the StyleGAN2 network, we proposed a generated image editing method based on global-local Jacobi disentanglement. In terms of global disentanglement, we extract the weight matrix of the style layer in the pre-trained StyleGAN2 network; obtain the semantic attribute direction vector by using the weight matrix eigen decomposition method; finally, utilize this direction vector as the initialization vector for the Jacobi orthogonal regularization search algorithm. Our method improves the speed of the Jacobi orthogonal regularization search algorithm with the proportion of effective semantic attribute editing directions. In terms of local disentanglement, we design a local contrast regularized loss function to relax the semantic association local area and non-local area and utilize the Jacobi orthogonal regularization search algorithm to obtain a more accurate semantic attribute editing direction based on the local area prior MASK. The experimental results show that the proposed method achieves SOTA in semantic attribute disentangled metrics and can discover more accurate editing directions compared with the mainstream unsupervised generated image editing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.