Particle-stabilized W/O/W emulsion gels were fabricated using a two-step procedure: ( i) a W/O emulsion was formed containing saccharose (for osmotic stress balance) and gelatin (as a gelling agent) in the aqueous phase and polyglycerol polyricinoleate (a lipophilic surfactant) in the oil phase; ( ii) this W/O emulsion was then homogenized with another water phase (W) containing wheat gliadin nanoparticles (hydrophilic emulsifier). The gliadin nanoparticles in the external aqueous phase aggregated at pH 5.5, which led to the formation of particle-stabilized W/O/W emulsion gels with good stability to phase separation. These emulsion gels were then used to coencapsulate a hydrophilic bioactive (epigallocatechin-3-gallate, EGCG) in the internal aqueous phase (encapsulation efficiency = 65.5%) and a hydrophobic bioactive (quercetin) in the oil phase (encapsulation efficiency = 97.2%). The emulsion gels improved EGCG chemical stability and quercetin solubility under simulated gastrointestinal conditions, which led to a 2- and 4-fold increase in their effective bioaccessibility, respectively.
In the field of sensing, finding high-performance amine molecular sensors has always been a challenging topic. Here, two highly stable 3D MOFs DUT-67(Hf) and DUT-67(Zr) with large specific surface areas and hierarchical pore structures were conveniently synthesized by solvothermal reaction of ZrCl 4 /HfCl 4 with a simple organic ligand, 2,5-thiophene dicarboxylic acid (H 2 TDC) according to literature approach. By analyzing TGA data, it was found that the two MOFs have defects (unsaturated metal sites) that can interact with substrates (H 2 O and volatile amine gas), which is conducive to proton transfer and amine compound identification. Further experiments showed that at 100 °C and 98% relative humidity (RH), the optimized proton conductivities of DUT-67(Zr) and DUT-67(Hf) can reach the high values of 2.98 × 10 −3 and 3.86 × 10 −3 S cm −1 , respectively. Moreover, the room temperature sensing characteristics of MOFs' to amine gases were evaluated at 68, 85 and 98% RHs, respectively. Impressively, the prepared MOFs-based sensors have the desired stability and higher sensitivity to amines. Under 68% RH, the detection limits of DUT-67(Zr) or DUT-67(Hf) for volatile amine gases were 0.5 (methylamine), 0.5 (dimethylamine) and 1 ppm (trimethylamine), and 0.5 (methylamine), 0.5 (dimethylamine) and 0.5 ppm (trimethylamine), respectively. As far as we know, this is the best performance of ammonia room temperature sensors in the past proton-conductive MOF sensors.
Controlling
the electronic structure of the basal plane of transition
metal dichalcogenides (TMDs) is essential to develop effective catalysts
for hydrogen evolution reaction (HER). In this work, we engineer the
surface structure of VS2 by doping 3d transition metal
(TM = Ti–Ni) atoms aiming to improve its catalytic activity.
Our results indicate that the HER performances of these TM@VS2s are much better than that of pristine VS2 due
to the charge modulation in S sites. Particularly, three systems of
TM@VS2s (TM = Ti, Mn, Co) are found to be perfect catalysts
for HER with ideal ΔG
H ∼
0 eV, even superior to that of Pt. Moreover, the HER performances
of TM@VS2s are revealed to depend strongly on the choice
of TM elements as well as their doping concentrations. Our study provides
a promising way to design effective electrocatalysts for energy conversion
in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.